Skip to main content
Log in

The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The calcareous marine haptophyte algae, the coccolithophorids, are of global environmental significance because of the impact of their blooms on the carbon cycle. The coccolithophorid, Pleurochrysis carterae was grown semi-continuously in paddlewheel-driven outdoor raceway ponds over a period of 13 months in Perth, Western Australia. The mean total dry weight productivity of P. carterae was 0.19 g.L−1.d−1 with cell lipid and CaCO3 contents of up to 33% and 10% of dry weight respectively, equivalent to an annual total biomass productivity of about 60 t.ha−1.y−1 and 21.9 t.ha−1.y−1 total lipid and 5.5 t.ha−1.y−1 total calcium carbonate production. Throughout the culture period there was little protozoan contamination or contamination by other algae. The pH of the growth medium increased to pH 11 during the day and was found to be a useful variable for monitoring the state of the culture. A comparison of the growth of P. carterae and Dunaliella salina in the raceway ponds showed no significant differences between these two species with regard to areal total dry weight productivity and lipid content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anon (1996) New micro-alga for fixing carbon dioxide. Japan Patent Number 8009963.

  • Belay A (1997) Mass culture of Spirulina outdoors — The Earthrise Farms experience. In Vonshak A (ed.), Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. Taylor and Francis Ltd, London, pp. 131–158

    Google Scholar 

  • Borowitzka MA (1988) Algal media and sources of algal cultures. In Borowitzka MA, Borowitzka LJ (eds.) Micro-algal Biotechnology. Cambridge University Press, Cambridge. pp. 456–465.

    Google Scholar 

  • Borowitzka MA (1999a) Economic evaluation of microalgal processes and products. In Cohen Z (ed.) Chemicals from Microalgae. Taylor & Francis, London, pp. 387–410.

    Google Scholar 

  • Borowitzka MA (1999b) Commercial production of microalgae: Ponds, tanks, tubes and fermenters. J. Biotech. 70: 313–321.

    Article  CAS  Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988) Dunaliella. In: Borowitzka MA, Borowitzka LJ (eds.), Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp. 27–58.

    Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1990) Commercial production of β-carotene by Dunaliella salina in open ponds. Bull. Mar. Sci. 47: 244–252.

    Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Ulilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 17: 403–412.

    Article  Google Scholar 

  • Fernandez E, Balch WM, Maranon E, Holligan PM (1994) High rates of lipid biosynthesis in cultured, mesocosm and coastal populations of the coccolithophorids Emiliania huxleyi. Mar. Ecol. Prog. Ser. 114: 13–22.

    CAS  Google Scholar 

  • Garcia GM, Moreno J, Canavate JP, Anguis V, Prieto A, Manzano C, Florencio F J, Guerrero MG (2003) Conditions for open-air outdoor culture of Dunaliella salina in southern Spain. J. Appl. Phycol. 15: 177–184.

    Article  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239.

    Article  PubMed  CAS  Google Scholar 

  • Houdan A, Bonnard A, Fresnel J, Fouchard C, Billard C, Probert I (2004) Toxicity of coastal coccolithophores (Prymnesiophyceae, Haptophyta). J. Plankt. Res. 26: 875–883.

    Article  Google Scholar 

  • Jimenez C, Cossio BR, Labella D, Niell FX (2003) The feasibility of industrial production of Spirulina (Arthrospira) in southern Spain. Aquaculture 217: 179–190.

    Article  Google Scholar 

  • Kanazawa Z, Fujita C, Yuhara T, Sasa T (1958) Mass culture of unicellular algae using the “open pond circulation method”. J. Gen. Appl. Microbiol. 4: 135–139.

    Google Scholar 

  • Kates M, Volcani BE (1966) Lipid components of diatoms. Biochim. Biophys. Acta. 116: 264–278.

    PubMed  CAS  Google Scholar 

  • Kawachi M, Inouye I (1995) Functional roles of the haptonema and the spine scales in the feeding process of Chrysochromnlina spinifera (Fournier) Pienaar et Norris (Haptophyta, Prymnesiophyta). Phycologia. 34: 193–200.

    Google Scholar 

  • Kishimoto M, Okakura T, Nagashima H, Minowa T, Yokoyama S, Yamaberi K (1994) CO2 fixation and oil production using micro-algae. J. Ferment. Bioeng. 78: 479–482.

    Article  CAS  Google Scholar 

  • Laws EA, Terry KL, Wickman J, Chalup M. (1983) A simple algal production system designed to utilise the flashing light effect. Biotech. Bioeng 25: 2319–2335.

    Article  CAS  Google Scholar 

  • Malin G, Kirst GO (1997) Algal production of dimethylsulfide and its atmospheric role. J. Phycol. 33: 889–896.

    Article  CAS  Google Scholar 

  • Malin G, Steinke M (2004) Dimethyl sulfide production: What is the contribution of the coccolithophores? In Thierstein HR, Young JR (eds), Coccolithophores from Molecular Processes to Global Impact. Springer Berlin, pp: 99–126.

    Google Scholar 

  • Matsuda Y, Colman B (1996) A new screening method for algal photosynthetic mutants – CO2-insensitive mutants of the green alga Chlorella ellipsoidea. Plant Physiol 110: 1283–1291.

    PubMed  CAS  Google Scholar 

  • Mercz TI (1994) A study of high lipid yielding microalgae with potential for large-scale production of lipids and polyunsaturated fatty acids. PhD Thesis, School of Biological Sciences and Biotechnology, Murdoch University, Perth. 278 pp.

  • Miyachi S, Burger J, Kotzabasis K, Thielmann J, Senger H (1996) Photosynthetic characteristics of three strains of cyanobacteria grown under low- or high-CO2 conditions. Z. Naturf. C 51: 40–46.

    CAS  Google Scholar 

  • Miyuki K, Masaru N, Yoshiko S, Naoto S, Masao K (1998) Chlorella microalgae and fixation of carbon dioxide using the Chlorella microalgae. Japanese Patent 10248553.

  • Moreno J, Vargas A, Rodriguez H, Rivas J, Guerrero MG (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomolec. Eng. 20: 191–197.

    Article  CAS  Google Scholar 

  • Nagle N, Lemke P (1990) Production of methyl ester fuel from microalgae. Appl. Biochem. Biotechnol 24/25: 11–22.

    Article  Google Scholar 

  • Olguin EJ, Galicia S, Mercado G, Perez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical condition. J. Appl. Phycol 15: 249–257.

    Article  CAS  Google Scholar 

  • Paasche E (1999) Reduced coccolith calcite production under light-limited growth: A comparative study of three clones of Emiliania huxleyi (Prymnesiophyceae). Phycologia 38: 508–516.

    Article  Google Scholar 

  • Pushparaj B, Pelosi E, Tredici MR, Pinzani E, Materassi R (1997) An integrated culture system for outdoor production of microalgae and cyanobacteria. J. Appl. Phycol 9: 113–119.

    Article  Google Scholar 

  • Richmond A. (1988) Spirulina. In Borowitzka MA, Borowitzka LJ (eds.), Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp. 85–121.

    Google Scholar 

  • Richmond A (1992) Open systems for the mass production of photoautotrophic microalgae outdoors: Physiological principles. J. Appl. Phycol. 4: 281–286.

    Article  Google Scholar 

  • Richmond A, Lichtenberg E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on the productivity of Spirulina platensis in open raceways. J. Appl. Phycol. 2: 195–206.

    Article  Google Scholar 

  • Reifel KM, McCoy MP, Tiffany MA, Rocke TE, Trees CC, Barlow SB, Faulkner DJ, Hulbert SH (2001) Pleurochrysis pseudoroscoffensis (Prymnesiophyceae) blooms on the surface of the Salton Sea, California. Hydrobiologia 466: 177–185.

    Article  Google Scholar 

  • Schroeder DC, Oke, J, Malin G, Wilson WH (2002) Coccolithovirus (Phycodnaviridae): Characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi. Arch. Virol 147: 1685–1698.

    Article  PubMed  CAS  Google Scholar 

  • Sheen J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy's aquatic species program-biodiesel from algae, National Renewable Energy Laboratory, Golden, CO 80401 NERL/TP-580–24190. 294 pp.

  • Sieburth, JM (1959) Acrylic acid, an ‘antibiotic’ principle in Phaeocystis blooms in Antarctic waters. Science 132: 676–677.

    Article  Google Scholar 

  • Siesser WG (1994) Historical background of coccolithophore studies. In Winter A, Siesser WG (eds.), Coccolithophores. Cambridge University Press, Cambridge, pp. 1–12.

    Google Scholar 

  • Sverdrup LE, Källqvist T, Kelley AE, Fürst CS, Hagen SB (2001) Comparative toxicity of acrylic acid to marine and freshwater microalgae and the significance for environmental effects assessments. Chemosphere 45: 653–658.

    Article  PubMed  CAS  Google Scholar 

  • Tyrell T, Merico, A (2004) Emiliania huxleyi: bloom observations and the conditions that induce them. In Thierstein HR, Young JR (eds.), Coccolithophores: From Molecular Processes to Global Impact. Springer, Berlin, pp. 75–98.

    Google Scholar 

  • van Alstyne K, Houser LT (2003) Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defence. Mar. Ecol. Prog. Ser. 250: 175–181.

    Google Scholar 

  • Volkman JK, Smith DJ, Eglinton G, Forsberg TEV, Corner EDS (1981) Sterol and fatty acid composition of four marine haptophycean algae. J. Mar. Biol. Ass. U.K. 61: 509–527.

    Article  CAS  Google Scholar 

  • Vonshak A, Richmond A (1988) Mass production of the blue-green alga Spirulina: An overview. Biomass 15: 233–247.

    Article  Google Scholar 

  • Westbroek P, Van Hinte JE, Brummer G, Veldhuis M, Brownlee C, Green JC, Harris R, Heimdal BR (1994) Emilianea huxleyi as a key to biosphere-geosphere interactions. In Green JC, Leadbeater BSC (eds.), The Haptophyte Algae. Clarendon Press, Oxford, pp. 321–334.

    Google Scholar 

  • Wolfe GV (2000) The chemical defence ecology of marine unicellular plankton: Constraints, mechanisms, and impacts. Biol. Bull 198: 225–244.

    PubMed  CAS  Google Scholar 

  • Wolfe GV, Strom SL, Holmes JL, Radzio T, Olson MB (2002) Dimethylsulfoniopropionate clevage by marine phytoplankton in response to mechanical, chemical, or dark stress. J. Phycol. 38: 948–960.

    Article  CAS  Google Scholar 

  • Wu Q, Dai J, Shirawa Y, Sheng G, Fu J (1999) A renewable energy source - hydrocarbon gases resulting from pyrolysis of the marine nanoplanktonic alga Emiliania huxleyi. J. Appl. Phycol 11: 137–142.

    Article  Google Scholar 

  • Yun YS, Park JM, Yang JW (1996) Enhancement of CO2 tolerance of Chlorella vulgaris by gradual increase of CO2 concentration. Biotechnol. Techniques 10: 713–716.

    CAS  Google Scholar 

  • Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J. Appl. Phycol 9:189–194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Reza Moheimani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moheimani, N.R., Borowitzka, M.A. The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18, 703–712 (2006). https://doi.org/10.1007/s10811-006-9075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-006-9075-1

Key words

Navigation