Skip to main content
Log in

Antioxidant activities of sulfated polysaccharides from brown and red seaweeds

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The in vitro antioxidant activities of the following six sulfated polysaccharides were investigated: iota, kappa and lambda carrageenans, which are widely used in the food industry, fucoidan (homofucan) from the edible seaweed Fucus vesiculosus and fucans (heterofucans) F0.5 and F1.1 from the seaweed Padina gymnospora. With respect to the inhibition of superoxide radical formation, fucoidan had an IC50 (the half maximal inhibitory concentration) of 0.058 mg·mL−1, while the IC50 for the kappa, iota and lambda carrageenans were 0.112, 0.332 and 0.046 mg·mL−1, respectively. All of the samples had an inhibitory effect on the formation of hydroxyl radicals. The results of peroxidation tests showed that fucoidan had an IC50 of 1.250 mg·mL−1 and that the kappa, iota and lambda carrageenans had an IC50 of 2.753 and 2.338 and 0.323 mg·mL−1, respectively. Fucan fractions showed low antioxidant activity relative to fucoidan. These results clearly indicate the beneficial effect of algal polysaccharides as antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

MDA:

Malondialdehyde

TBA:

2-Thiobarbituric acid

NADH:

Nicotinamide adenine dinucleotide

F0.5:

Fucan precipitated with 0.5 vol. of acetone

F1.1:

Fucan precipitated with 1.1 vol. of acetone

References

  • Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 13:29–40

    Article  Google Scholar 

  • Boisson-Vidal C, Haroun F, Ellouali M, Blondin C, Fischer AM, Agostini A, Jozefonvicz J (1995) Biological activities of polysaccharides from marine algae. Drugs Future 20:1237–1249

    Google Scholar 

  • Bueg JA, Aust SD (1978) Microsomal lipid peroxidation. In: Feischer S, Packer L (eds) Methods in Enzymology, vol 52. Academic Press, New York, pp 302–310

  • Dietrich CP, Farias GGM, Abreu LRD, Silva LF, Leite EL, Nader HB (1995) A new approach for characterization of polysaccharides from algae: Presence of four main acidic polysaccharides in three species of the class Phaeophyceae. Plant Sci 108:143–153

    Article  CAS  Google Scholar 

  • Dische Z (1962a) Color reactions of 6-deoxy-, 3-deoxy- and 3,6-dideoxyhexoses. In: Whistler RL, Wolfrom ML (eds) Methods of carbohydrate chemistry, vol 1. Academic Press, London, pp 501–503

    Google Scholar 

  • Dische Z (1962b) General color reactions. In: Whistler RL, Wolfrom ML (eds) Methods of carbohydrate chemistry, vol 1. Academic Press, London, pp 484–488

    Google Scholar 

  • Dische Z (1962c) Color reactions of hexuronic acids. In: Whistler RL, Wolfrom ML (eds) Methods of carbohydrate chemistry, vol 1. Academic Press, London, pp 497–501

    Google Scholar 

  • Dodgson KS, Price RG (1962) A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J 84:106–110

    PubMed  CAS  Google Scholar 

  • Dubois M, Gillis KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Duh PD (1999) Antioxidant activity of water extract of four Harng Jyur (Chrysanthemum morifolium Ramat) varieties in soybean oil emulsion. Food Chem 66:471–476

    Article  CAS  Google Scholar 

  • Fujimoto K, Ohmura H, Kaneda T (1985) Screening test for antioxygenic compounds from marine algae and fractionation from Eisenia bicyclis and Undaria pinnatifida. Bull Jpn Soc Fish 46:1125–1130

    Google Scholar 

  • Gordon GC, Yen P, Duh D, Tsai CL (1993) Relationship between antioxidant activity and maturity of peanut hulls. J Agric Food Chem 41:67–70

    Article  Google Scholar 

  • Guiry M, Blunden G (1991) Seaweeds resources in Europe: uses and potential. John Wiley, London

    Google Scholar 

  • Le Tutour B (1990) Antioxidative activities of alga extracts, synergistic effect with vitamin E. Phytochemistry 29:3759–3765

    Article  Google Scholar 

  • Le Tutour B, Benslimane F, Gouleau MP, Gouygou JP, Saadan B, Quemeneur (1998) Antioxidant and pro-oxidant activities of brown algae, Laminaria digitata, Himanthalia elongate, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. J Appl Phycol 10:121–129

    Article  Google Scholar 

  • Leite EL, Medeiros MGL, Rocha HAO, Farias GGM, Silva LF, Chavante SF, Dietrich CP, Nader HB (1998) Structure of a new fucan from the algae Spatoglossum schöederi. Plant Sci 132:215–228

    Article  CAS  Google Scholar 

  • Liu F, Ooi VCE, Chang ST (1997) Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci 60:763–771

    Article  PubMed  CAS  Google Scholar 

  • Matsukawa R, Dubinsky E, Kishimoto K, Masaki P, Masuda K, Takeuchi T, Chihara M, Yamamoto Y, Niki E, Karube I (1997) A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9:29–35

    Article  CAS  Google Scholar 

  • Nishikimi M, Rao A, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Biochem Biophys Res Commun 46:849–854

    Article  PubMed  CAS  Google Scholar 

  • Norziah MH, Foo SL, Abd AK (2006) Rheological studies on mixtures of agar (Gracilaria changii) and κ-carrageenan. Food Hydrocoll 20:204–217

    Article  CAS  Google Scholar 

  • Patankar MS, Oehninger L, Barnett T, Williams RL, Clark GF (1993) A revised structure for fucoidan may explain some of its biological activities. J Biol Chem 268:21770–21776

    PubMed  CAS  Google Scholar 

  • Qi H, Zhao T, Zhang Q, Li Z, Xing R (2005) Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J Appl Phycol 17:527–534

    Article  CAS  Google Scholar 

  • Rocha HAO, Moraes FA, Trindade ES, Franco CRC, Torquato RJS, Veiga SS, Valente AP, Mourão PAS, Leite EL, Nader HB, Dietrich CP (2005) Structural and haemostatic activities of a sulfated galactofucan from the brown alga Spatoglossum schroederi. An ideal antithrombotic agent? J Biol Chem 280:41278–41288

    Article  PubMed  CAS  Google Scholar 

  • Ruperez P, Ahrazem O, Leal JA (2002) Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50:840–845

    Article  PubMed  CAS  Google Scholar 

  • Santos MGL, Xavier CCA, Goes GRM, Rocha HAO, Leite EL (2004) Purification and chemical characterization of fucoidan from Fucus vesiculosus. In: Proc 2nd Int Symp Biochem Macromol Biotechnol. Recife, Brazil

  • Silva TMA, Alves LG, Queiroz KCS, Rocha HAO, Leite EL (2005) Partial characterization and anticoagulant activity of a heterofucan from the brown seaweed Padina gymnospora. Braz J Med Biol Res 38:523–533

    PubMed  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Spector T (1978) Refinement of the Coomassie blue method of protein quantification. Anal Biochem 86:142–146

    Article  PubMed  CAS  Google Scholar 

  • Usov AI (1998) Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocoll 12:301–308

    Article  CAS  Google Scholar 

  • Usov AI, Velde F van de, Knutsen SH, Rollem HS, Cerezo AS (2002) 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci 13:73–92

    Article  Google Scholar 

  • Wei Z, Bai O, Steven Richardson J, Mousseau DD, Li X (2003) Olanzapine protects PC12 cells from oxidative stress induced by hydrogen peroxide. J Neursci Res 73:364–368

    Article  CAS  Google Scholar 

  • Yuan H, Zhang W, Li X, Lü X, Li N, Gao X, Song J (2005) Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivates. Carbohydr Res 340:685–690

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Yu P, Li Z, Zhang H, Xu Z, Li P (2003) Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. J Appl Phycol 15:305–310

    Article  CAS  Google Scholar 

  • Zhao X, Xue CH, Li ZJ, Cai YP, Liu HY, Zi HT (2004) Antioxidant and hepatoprotective activities of low molecular weight sulfated polysaccharide from Laminaria japonica. J Appl Phycol 16:111–115

    Google Scholar 

  • Zhou YC, Zheng RL (1991) Phenolic compounds and analog as superoxide anion scavengers and antioxidants. Biochem Pharmacol 42:1177–1179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Conselho Nacional de Pesquisa (CNPq) no. 475867/2003-3 and (CAPES) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edda Lisboa Leite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha de Souza, M.C., Marques, C.T., Guerra Dore, C.M. et al. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 19, 153–160 (2007). https://doi.org/10.1007/s10811-006-9121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-006-9121-z

Key words

Navigation