Skip to main content
Log in

PHB accumulation in Nostoc muscorum under different carbon stress situations

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Use of algae for intracellular poly-β-hydroxybutyrate (PHB) accumulation for bioplastic production offers an opportunity in economic efficiency by reduced costs. The cyanobacterium Nostoc muscorum is a PHB accumulator which presents a great potential as raw material supplier because of short generation cycles. Here, we examined a range of experimental conditions including different growth conditions of phosphate-starved cells with the addition of external carbon sources. The highest, absolute PHB accumulation was measured in a phosphate-starved medium with 1% (w/w) glucose and 1% (w/w) acetate. PHB accumulated inside algae cells. After 23 days of growth in phosphate-starved medium, 1 L of culture contained up to 145.1 mg PHB. The highest PHB accumulation based on the cell dry weight was in an experiment with aeration and CO2 addition. The intracellular level of PHB was up to 21.5% cell dry weight after 8 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Booma M, Selke SE, Giacin JR (1994) Degradable plastics. J Elastomers Plast 26:104–142

    Article  CAS  Google Scholar 

  • Bothe H (1977) Stickstoff-Fixierung und Photosynthese in den Heterocysten der Blaualgen. Naturwissenschaften 64:143–144

    Article  Google Scholar 

  • Collier JL, Grossman AR (1992) Chlorosis induced by nutrient deprivation in Synechococcus sp. Strain PCC-7942—not all bleaching is the same. J Bacteriol 174:4718–4726

    PubMed  CAS  Google Scholar 

  • Dawes EA (1992) Storage polymers in prokaryotes. In: Mohan S, Dow C, Coles JA (eds) Prokaryotic structure and function: a new perspective. Cambridge University Press, Cambridge, pp 88–122

    Google Scholar 

  • De Gelder J, Willemse-Erix D, Scholtes MJ, Sanchez JL, Maquelin K, Vandenabeele P, De Boever P, Puppels GJ, Moens L, De Vos P (2008) Monotoring poly-β-hydroxybutyrate production in Cupriavidus necator DSM 428 (H16) with Raman spectroscopy. Anal Chem 80:2155–2160

    Article  PubMed  Google Scholar 

  • Handrick R, Reinhardt S, Jendrossek D (2000) Mobilization of poly-β-hydroxybutyrate in Ralstonia eutropha. J Bacteriol 182:5916–5918

    Article  PubMed  CAS  Google Scholar 

  • Hänggi U (1995) Requirements on bacterial polyesters as future substitute for conventional plastics for consumer goods. FEMS Microbiol Rev 16:213–220

    Article  Google Scholar 

  • Kranz SA, Sültemeyer D, Richter KU, Rost B (2009) Carbon acquisition by Trichodesmium: the effect of pCO2 and diurnal changes. Limnol Oceanogr 54:548–559

    Article  CAS  Google Scholar 

  • Law JH, Slepecky RA (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82:33–36

    PubMed  CAS  Google Scholar 

  • Linne von Berg KH, Hoef-Emden K, Marin B, Melkonian M (2004) Der Kosmos-Algenführer. Die wichtigsten Süßwasseralgen im Mikroskop. Franckh-Kosmos Verlag GmbH & Co. KG, Stuttgart

    Google Scholar 

  • Lopez G, Fernández A, Sevilla F, Fernández S (2009) Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresour Technol 100:5904–5910

    Article  Google Scholar 

  • Mallick N, Sharma L, Singh AK (2007) Poly-β-hydroxybutyrate accumulation in Nostoc muscorum: effects of metabolic inhibitors. J Plant Physiol 164:312–317

    Article  PubMed  CAS  Google Scholar 

  • Panda B, Sharma L, Mallick N (2005) Poly-β-hydroxybutyrate accumulation in Nostoc muscorum and Spirulina platensis under phosphate limitation. J Plant Physiol 162:1376–1379

    Article  PubMed  CAS  Google Scholar 

  • Reddy CSK, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Article  PubMed  CAS  Google Scholar 

  • SAG (2008) Sammlung für Algenkulturen, Institut für Pflanzenwissenschaften, Universität Göttingen, Deutschland. Available at: http://epsag.uni-goettingen.de. Accessed 6 August 2008

  • Sharma L, Mallick N (2005a) Accumulation of poly-β-hydroxybutyrate in Nostoc muscorum: regulation by pH, light-dark cycles, N and P status and carbon sources. Bioresour Technol 96:1304–1310

    Article  PubMed  CAS  Google Scholar 

  • Sharma L, Mallick N (2005b) Enhancement of poly-β-hydroxybutyrate accumulation in Nostoc muscorum under mixotrophy, chemoheterotrophy and limitations of gas-exchange. Biotechnol Lett 27:59–62

    Article  PubMed  CAS  Google Scholar 

  • Sharma L, Singh AK, Panda B, Mallick N (2007) Process optimization for poly-β-hydroxybutyrate production in a nitrogen fixing caynobacetrium, Nostoc muscorum using response surface methodology. Bioresour Technol 98:987–993

    Article  PubMed  CAS  Google Scholar 

  • Wu GF, Wu QY, Shen ZY (2001) Accumulation of poly-β-hydroxybutyrate in cyanobacterium Synechocystis sp. PCC6803. Bioresour Technol 76:85–90

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haase, S.M., Huchzermeyer, B. & Rath, T. PHB accumulation in Nostoc muscorum under different carbon stress situations. J Appl Phycol 24, 157–162 (2012). https://doi.org/10.1007/s10811-011-9663-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9663-6

Keywords

Navigation