Skip to main content
Log in

Variations of chemical composition and energy content in natural and genetically defined cultivars of Macrocystis from Chile

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Seasonal and intra-thallus variations of energy content and chemical composition were assessed in an intertidal population of Macrocystis in southern Chile. Phylloid protein and lipid from cultured material were compared with seasonal variation in native Macrocystis. Furthermore, populations in northern and southern Chile and Falkland Islands were compared with various intra-/inter-cultivar genotypes of Chilean Macrocystis. Energetic values did not show seasonal or intra-thallus variations, with the exception of pneumatocysts, which had high levels of ash (49.9% DW) and low values of total energy (8.3% DW). Seasonal patterns were detected in protein and carbohydrate composition, with opposite trends. Likewise, holdfasts contained high amounts of protein (21.0% DW), and phylloids were high in soluble carbohydrates (4.5% DW). Lipids instead showed two peaks per year in an intertidal population and reached up to 0.4% DW. Alginic acid was the major organic compound in intertidal Macrocystis (46.8% DW), with differences on seasonal and intra-thallus levels. Mannitol content, in contrast, was erratic and lower than in other Laminariales (<5% DW). In general, protein and lipid content in our cultivars were 20% higher than in natural populations. Our experimental results indicate the possibility to manipulate the chemical composition of Macrocystis thalli through inter-/intra-specific crosses. This will be a basis, upon which selected genotypes can open new perspectives to Macrocystis mariculture industries in Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agatsuma Y, Yamada Y, Taniguchi K (2002) Dietary effect of the boiled stipe of brown alga Undaria pinnatifida on the growth and gonadal enhancement of the sea urchin Strongylocentrotus nudus. Fish Sci 68:1274–1281

    Article  CAS  Google Scholar 

  • AOAC (1990) Official methods of analysis. Association of Official Analytical Chemist, Washington, DC, 1298 pp

    Google Scholar 

  • Black WAP (1948) Seasonal variation in chemical constitution of some of the sub-littoral seaweeds common to Scotland. Part II. Laminaria digitata. J Soc Chem Ind 67:355–357

    Article  CAS  Google Scholar 

  • Cameron MC, Ross AG, Percival GV (1948) Methods for the routine estimation of mannitol, alginic acid and combined fucose in seaweeds. J Soc Chem Ind 67:161–164

    Article  CAS  Google Scholar 

  • Casas-Valdez M, Hernández-Contreras H, Marín-Álvarez A, Águila-Ramírez RN, Hernández-Guerrero CJ, Sánchez-Rodríguez I, Carrillo-Domínguez S (2006) El alga marina Sargassum (Sargassaceae): una alternativa tropical para la alimentación de ganado caprino. Int J Trop Biol 54:83–92

    CAS  Google Scholar 

  • Castro-González MI, Carrillo-Domínguez S, Pérez-Gil F (1994) Chemical composition of Macrocystis pyrifera (Giant Sargazo) collected in summer and winter and its possible use in animal feeding. Cienc Mar 20:33–40

    Google Scholar 

  • Chapman ARO, Craigie JS (1978) Seasonal growth in Laminaria longicruris: relations with reserve carbohydrate storage and production. Mar Biol 46:209–213

    Article  CAS  Google Scholar 

  • Coyer JA, Smith GJ, Anderson RA (2001) Evolution of Macrocystis spp. (Phaeophyceae) as determined by ITS1 and ITS2 sequences. J Phycol 37:574–585

    Article  Google Scholar 

  • Cruz-Suarez LE, Tapia-Salazar M, Nieto-Lopez MG, Guajardo-Barbosa C, Ricque-Marie D (2009) Comparison of Ulva clathrata and the kelps Macrocystis pyrifera and Ascophyllum nodosum as ingredients in shrimp feeds. Aquac Nutrition 15:421–430

    Article  CAS  Google Scholar 

  • Dantagnan P, Hernández A, Bórquez A, Mansilla A (2009) Inclusion of macroalgae meal (Macrocystis pyrifera) as feed ingredient for rainbow trout (Oncorhynchus mykiss): effect on flesh fatty acid composition. Aquacult Res 41:87–94

    Article  CAS  Google Scholar 

  • Dubois M, Guilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350

    Article  CAS  Google Scholar 

  • Dworjanyn SA, Pirozzi I, Liu W (2007) The effect of the addition of algae feeding stimulants to artificial diets for the sea urchin Tripneustes gratilla. Aquaculture 273:624–633

    Article  Google Scholar 

  • Gerasimenko NI, Busarova NG, Moiseenko OP (2010) Age-dependent changes in the content of lipids, fatty acids, and pigments in brown alga Costaria costata. Russ J Plant Physiol 57:62–68

    Article  CAS  Google Scholar 

  • Gojón-Baez HH, Siqueiros-Beltrones DA, Hernandez-Contreras H (1998) In situ ruminal digestibility and degradability of Macrocystis pyrifera and Sargassum spp. in bovine livestock. Cienc Mar 24:463–481

    Google Scholar 

  • Gómez I, Westermeier R (1995) Energy content and organic constituents in Antarctic and South Chilean marine brown algae. Polar Biol 15:597–602

    Article  Google Scholar 

  • Gorham J, Lewey SA (1984) Seasonal changes in the chemical composition of Sargassum muticum. Mar Biol 80:103–107

    Article  CAS  Google Scholar 

  • Graham MH, Vasquez JA, Buschmann AH (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr Mar Biol Annu Rev 45:39–88

    Google Scholar 

  • Hahn K (1989) Nutrition and growth of abalone. In: Hahn K (ed) Handbook of culture of abalone and other marine gastropods. CRC, Boca Raton, pp 135–180

    Google Scholar 

  • Hernández-Carmona G, Carrillo-Domínguez S, Arvizu-Higuera DL, Rodríguez-Montesinos YE, Murillo-Álvarez Muñoz-Ochoa M, Castillo-Domínguez RM (2009) Monthly variation in the chemical composition of Eisenia arborea J.E. Areschoug. J Appl Phycol 21:607–616

    Article  Google Scholar 

  • Jensen A, Indergaard M, Holt TJ (1985) Seasonal variation in the chemical composition of Saccorhiza polyschides (Laminariales, Phaeophyceae). Bot Mar 28:375–381

    Article  CAS  Google Scholar 

  • Jones RF (1956) On the chemical composition of the brown alga Himanthalia elongata (L.) S.F. Gray. Biol Bull 110:169–178

    Article  CAS  Google Scholar 

  • Kraan S (2010) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Change. doi:10.1007/s11027-010-9275-5

  • Lawrence JM, McClintock JB (1988) Allocation of organic material and energy to the holdfast, stipe, and fronds in Postelsia palmaeformis (Phaeophyta: Laminariales) on the California coast. Mar Biol 99:151–155

    Article  CAS  Google Scholar 

  • Macaya EC, Zucarello G (2010) DNA barcoding and genetic divergence in the giant kelp Macrocystis (Laminariales). J Phycol 46:736–742

    Article  CAS  Google Scholar 

  • Macchiavello J, Araya E, Bulboa C (2010) Production of Macrocystis pyrifera (Laminariales; Phaeophyceae) in northern Chile on spore-based culture. J Appl Phycol 22:691–697

    Article  CAS  Google Scholar 

  • Mc Hugh D (2003) A guide to the seaweed industry. FAO Fisheries Technical Paper Nº 441. Rome, Italy. Available at: www.FAO.org

  • McKee JWA, Kavalieris L, Brasch DJ, Brown MT, Melton LD (2002) Alginate content and composition of Macrocystis pyrifera from New Zealand. J Appl Phycol 4:357–369

    Article  Google Scholar 

  • Meeuse BJD (1962) Storage products. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic, New York, pp 289–291

    Google Scholar 

  • Nelson MM, Phleger CF, Nichols PD (2002) Seasonal lipid composition in macroalgae of the northeastern Pacific ocean. Bot Mar 45:58–65

    Article  CAS  Google Scholar 

  • Paine RT, Vadas RL (1969) Calorific values of benthic marine algae and their postulated relation to invertebrate food preference. Mar Biol 4:79–86

    Article  Google Scholar 

  • Percival E (1979) The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br Phycol J 14:103–117

    Article  Google Scholar 

  • ProChile (2011) Estadísticas de comercio exterior. Available at: www.Prochile.cl

  • Reed RH, Davison IR, Chudek JA, Foster R (1985) The osmotic role of mannitol in the Phaeophyta: an appraisal. Phycologia 24:35–47

    Article  Google Scholar 

  • Robledo D, Freile-Pelegrin Y (2005) Seasonal variation in photosynthesis and biochemical composition of Caulerpa spp. (Bryopsidales, Chlorophyta) from the Gulf of Mexico. Phycologia 44:312–319

    Article  Google Scholar 

  • Rosell KG, Srivastava LM (1984) Seasonal variation in chemical constituents of the brown algae Macrocystis integrifolia and Nereocystis luetkeana. Can J Bot 62:2229–2236

    Article  CAS  Google Scholar 

  • Roughan PG (1985) Phosphatidylglycerol and chilling sensitivity in plants. Plant Physiol 77:740–746

    Article  PubMed  CAS  Google Scholar 

  • Sernapesca (2009) Anuario Estadístico de Pesca. Ministerio de Economía Fomento y Reconstrucción, Chile. Available at: www.Sernapesca.cl

  • Smith KL, Harwood JL (1984) Lipids and lipid metabolism in the brown alga, Fucus serratus. Phytochemistry 23:2469–2473

    Article  CAS  Google Scholar 

  • Steubing L (1965) Pflanzenokologisches Praktikum. Parey, Hamburg, 262 p

    Google Scholar 

  • Stockton B, Evans LV, Morris ER, Powell DA, Rees DA (1980) Alginate block structure in Laminaria digitata: implications for holdfast attachment. Bot Mar 23:563–567

    CAS  Google Scholar 

  • van Tussenbroek BI (1989) Seasonal growth and composition of fronds of Macrocystis pyrifera in the Falkland Islands. Mar Biol 100:419–430

    Article  Google Scholar 

  • Westermeier R (1982) Zonierung, Biomasse, Energiehalt und Schwermetallakkumulation marinen algen aus Chile, Helgoland und Spanien. Ph.D. thesis, Justus-Liebig Universitat, Giessen, 160 pp

  • Westermeier R (1987) Contenidos energéticos en una macroalga del sur de Chile, Durvillaea antartica (Cham.) Hariot (Phaeophyta, Fucales). In: Verreth A, Carrillo M, Zanuy S, Huisman EA (eds) Investigación Acuícola en América Latina. Pudoc, Wageningen, pp 367–379

    Google Scholar 

  • Westermeier R, Gómez I (1996) Biomass, energy contents and major organic compounds in the brown alga Lessonia nigrescens (Laminariales, Phaeophyceae) from Mehuín, South Chile. Bot Mar 39:553–559

    Article  CAS  Google Scholar 

  • Westermeier R, Möller P (1990) Population dynamics of Macrocystis pyrifera (L.) C. Agardh in the rocky intertidal of southern Chile. Bot Mar 33:363–367

    Article  Google Scholar 

  • Westermeier R, Patiño DJ, Piel MI, Maier I, Müller DG (2006) A new approach to kelp mariculture in Chile: production of free-floating sporophyte seedlings from gametophyte cultures of Lessonia trabeculata and Macrocystis pyrifera. Aquaculture Res 37:164–171

    Article  Google Scholar 

  • Westermeier R, Patiño DJ, Müller DG (2007) Sexual compatibility and hybrid formation between the giant kelp species Macrocystis pyrifera and M. integrifolia (Laminariales, Phaeophyceae) in Chile. J Appl Phycol 19:215–221

    Article  Google Scholar 

  • Westermeier R, Patiño D, Müller H, Müller DG (2010) Towards domestication of giant kelp (Macrocystis pyrifera) in Chile: selection of haploid parent genotypes, outbreeding, and heterosis. J Appl Phycol 22:357–361

    Article  Google Scholar 

  • Westermeier R, Patiño DJ, Murúa P, Müller DG (2011) Macrocystis mariculture in Chile: performance of heterosis genotype constructs under field conditions. J Appl Phycol 23:819–825

    Article  Google Scholar 

  • Wort DJ (1955) The seasonal variation in chemical composition of Macrocystis integrifolia and Nereocystis luetkeana in British Columbia coastal waters. Can J Bot 33:323–340

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Englewood Cliffs, 663 p

    Google Scholar 

  • Zimmerman RC, Kremer JN (1986) In situ growth and chemical composition of the giant kelp, Macrocystis pyrifera: response to temporal changes in ambient nutrient availability. Mar Ecol Progr Ser 27:277–285

    Article  CAS  Google Scholar 

  • Zimmermann H, Zimmermann D, Reuss R, Feilen J, Manz B, Katsen A, Weber M, Ihmig FR, Ehrhart F, Gessner P, Behringer M, Steinbach A, Wegner LH, Sukhorukov VL, Vasquez JA, Schneider S, Weber MM, Volke F, Wolf R, Zimmermann U (2005) Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Materials Sci: Materials in Medicine 16:491–501

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially founded by Volkswagen Foundation (Germany), International Foundation for Sciences (Sweden), Dirección de Investigación y Desarrollo UACh (Chile), and FONDEF de Conicyt (D00I1144 and D04I1288 grants, Chile). We thank F. Bascur and C. Atero for field assistance and support by Hagua and Hidrocultivos companies in mariculture installations. Finally, helpful suggestions from two anonymous reviewers are acknowledged also.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Westermeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westermeier, R., Murúa, P., Patiño, D.J. et al. Variations of chemical composition and energy content in natural and genetically defined cultivars of Macrocystis from Chile. J Appl Phycol 24, 1191–1201 (2012). https://doi.org/10.1007/s10811-011-9752-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9752-6

Keywords

Navigation