Skip to main content

Advertisement

Log in

The Lessonia nigrescens fishery in northern Chile: “how you harvest is more important than how much you harvest”

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In Chile, management of natural resources usually starts right before its imminent collapse or after evident declination. In the northern area of the country, the fishery of brown seaweeds has an enormous social, ecological, and economical importance. More than 11,000 people depend directly or indirectly on the collection and harvesting of this resource. Ecologically, kelps constitute areas for food, reproduction, and refuge for hundreds of invertebrates and fish species. Economically, landings up to 300,000 dry tons per year represent close to US $60 million for the industry. Until 2002, the Chilean brown seaweed fishery was mainly sustained by natural mortality, where plants cast ashore were collected by artisanal fishermen. Since then, three brown seaweed species of economic importance (Lessonia nigrescens, Lessonia trabeculata, and Macrocystis pyrifera) have been intensively harvested in coastal areas between 18° and 32° S. To manage kelp populations along the northern Chilean coast, regulations have been based on the principle “how you harvest is more important than how much you harvest”. This exploitation strategy has been adopted in consensus between fishermen, industries, governmental entities, and scientists. Since L. nigrescens represents more than 70% of total brown seaweed landings, this study tests the effects of L. nigrescens harvesting on the following population variables: (1) abundance, (2) distribution, (3) juvenile recruitment, (4) plant morphology, (5) frequency of reproductive plants, and (6) biodiversity of the macroinvertebrate community associated to kelp holdfasts. Our results show that, despite the enormous harvesting pressure on Lessonia density and biomass, the associated macroinvertebrate richness has been maintained, due to normal plant growth and high recruitment all year round.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alveal K, Romo H, Ávila M (1973) Consideraciones ecológicas de las regiones de Valparaíso y de Magallanes. Rev Biol Mar Valparaíso 15:1–29

    Google Scholar 

  • Anderson RJ, Bolton JJ, Molloy FJ, Rotmann KWG (2003) Commercial seaweed production and research in southern Africa. In: Chapman ARO, Anderson RJ, Vreeland VJ, Davison IR (eds) Proceedings of the 17th International Seaweed Symposium. Oxford University Press, New York, pp 1–12

    Google Scholar 

  • Barilotti DC, Zertuche-González JA (1990) Ecological effects of seaweed harvesting in the Gulf of California and Pacific Ocean off Baja California and California. Hydrobiologia 204–205:35–40

    Article  Google Scholar 

  • Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335

    Article  Google Scholar 

  • Camus P, Vásquez E, González E, Gálaz L (1994) Fenología espacial de la diversidad intermareal en el norte de Chile: patrones comunitarios de variación geográfica e impacto de los procesos de extinción-recolonización post El Niño 82-83. Medio Ambiente 12(1):57–68

    Google Scholar 

  • Chopin T, Sawhney M (2009) Seaweeds and their mariculture. In: Steele JH, Thorpe SA, Turekian KK (eds) The Encyclopedia of Ocean Sciences. Elsevier, Oxford, pp 4477–4487

    Google Scholar 

  • Correa JA, Lagos N, Medina M, Castilla JC, Cerda M, Ramírez M, Martínez E, Faugeron S, Andrade S, Pinto R, Contreras L (2006) Experimental transplants of the large kelp Lessonia nigrescens (Phaeophyceae) in high-energy wave exposed rocky intertidal habitats of northern Chile: experimental, restoration and management applications. J Exp Mar Biol Ecol 335:13–18

    Article  Google Scholar 

  • Dayton PK, Currie V, Gerrodette T, Keller B, Rosenthal R, Tresca DV (1984) Patch dynamics and stability of California kelp communities. Ecol Monogr 54:253–289

    Article  Google Scholar 

  • Anuario Estadístico de Pesca SERNAP (1980–2010) Estadísticas pesqueras. República de Chile, Ministerio de Economía, Fomento y Reconstrucción. http://www.sernapesca.cl

  • Graham MH, Vásquez JA, Buschmann AH (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Ocean Mar Biol Ann Rev 45:39–88

    Google Scholar 

  • Gutiérrez A, Correa T, Muñoz V, Santibáñez A, Marcos R, Cáceres C, Buschmann AH (2006) Farming of the giant kelp Macrocystis pyrifera in southern Chile for development of novel food products. J Appl Phycol 18:259–267

    Article  Google Scholar 

  • Hoffmann AJ, Santelices B (1997) Marine flora of central Chile. Ediciones Universidad Católica de Chile, Santiago, p 434

    Google Scholar 

  • Jones CG, Lawton H, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Kelly L, Collier L, Costello MJ, Diver M, McGarvey S, Kraan S, Morrissey J, Guiry MD (2001) Impact assessment of hand and mechanical harvesting of Ascophyllum nodosum on regeneration and biodiversity. Mar Res Ser 19:1–57

    Google Scholar 

  • Levitt GJ, Anderson RJ, Boothroyd CJT, Kemp FA (2002) The effects of kelp harvesting on its regrowth and the understorey benthic community at Danger Point, South Africa, and a new method of harvesting kelp fronds. South African J Mar Sci 24(1):71–85

    Article  Google Scholar 

  • Lorentsen SH, Sjøtun K, Grémillet D (2010) Multi-trophic consequences of kelp harvest. Biol Conserv 143:2054–2062

    Article  Google Scholar 

  • Macaya EC, Zuccarello GC (2010) Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar Ecol Prog Ser 420:103–112

    Article  Google Scholar 

  • Muñoz V, Hernández-González MC, Buschmann AH, Graham MH, Vásquez JA (2004) Variability in per capita oogonia and sporophyte production from giant kelp gametophyte (Macrocystis pyrifera, Phaeophyceae). Rev Chil Hist Nat 77:639–647

    Google Scholar 

  • Rothman MD, Anderson RJ, Bolton JJ, Boothroyd CJT, Kemp FA (2010) A simple method for rapid estimation of Ecklonia maxima and Laminaria pallida biomass using floating surface quadrats. South African J Mar Sci 32(1):137–143

    Article  Google Scholar 

  • Santelices B (1982) Bases Biológicas para el manejo de Lessonia nigrescens (Phaeophyta, Laminariales) en Chile Central. Monografías Biológicas 2:135–150

    Google Scholar 

  • Santelices B (1989) Algas marinas de Chile: Distribución, Ecología, Utilización, Diversidad. Ediciones Universidad Católica de Chile, Santiago de Chile, p 399

    Google Scholar 

  • Santelices B, Lopehandía J (1981) Chilean seaweeds resources: a quantitative review of potential and present utilization. 10th Proc Int Seaweed Symp: 725–730

  • Santelices B, Ojeda FP (1984) Effects of canopy removal on the understory algal community structure of coastal forests of Macrocystis pyrifera from southern South America. Mar Ecol Prog Ser 14:165–173

    Article  Google Scholar 

  • Santelices B, Castilla JC, Cancino J, Schmiede P (1980) Comparative ecology of Lessonia nigrescens and Durvillaea antarctica (Phaeophyta) in Central Chile. Mar Biol 59:119–132

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: principles and practice of statistical in biological research. Freeman, San Francisco, p 776

    Google Scholar 

  • Tellier F, Vega JMA, Broitman B, Vásquez JA, Valero M, Faugeron S (2011a) The importance of having two species instead of one in kelp management: the Lessonia nigrescens species complex. Cah Biol Mar 52:455–465

    Google Scholar 

  • Tellier F, Tapia J, Faugeron S, Destombe C, Valero M (2011b) The Lessonia nigrescens species complex (Laminariales, Phaeophyceae) shows strict parapatry and complete reproductive isolation in a secondary contact zone. J Phycol 47:894–903

    Article  Google Scholar 

  • Ugarte RA (2007) Review of the management of rockweed (Ascophyllum nodosum) harvesting in New Brunswick after a decade of its initiation. In: Pohle GW, Wells PG, and Rolston SJ (eds) Challenges in ENVIRONMENTAL Management in the Bay of Fundy-Gulf of Maine. Proceedings of the 7th Bay of Fundy Science Workshop, St. Andrews, New Brunswick, 24–27 October 2006. Bay of Fundy Ecosystem Partnership Technical Report No. 3. Bay of Fundy Ecosystem Partnership, Wolfville, NS. N° 3: 108-116

  • Ugarte RA, Sharp G (2001) A new approach to seaweed management in Eastern Canada: the case of Ascophyllum nodosum. Cah Biol Mar 42:63–70

    Google Scholar 

  • Ugarte RA, Sharp G, Moore B (2006) Changes in the brown seaweed Ascophyllum nodosum (L.) Le Jol. plant morphology and biomass produced by cutter rake harvests in southern New Brunswick, Canada. J Appl Phycol 18:351–359

    Article  Google Scholar 

  • Ugarte RA, Craigie JS, Critchley AT (2010) Fucoid flora of the rocky intertidal of the Canadian maritimes: implications for the future with rapid climate change. In: Israel A, Einav R, Seckbach J (eds) Seaweeds and their role in globally changing environments. Springer, Dordrecht, pp 73–92

    Google Scholar 

  • Vásquez JA (1991) Variables morfométricas y relaciones morfológicas de Lessonia trabeculata Villouta and Santelices, 1986, en una población submareal del norte de Chile. Rev Chil Hist Nat 64:271–279

    Google Scholar 

  • Vásquez JA (1992) Lessonia trabeculata, a subtidal bottom kelp in northern Chile: a case study for a structural and geographical comparation. In: Seeliger U (ed) Coastal plants of Latin America. Academic, San Diego, pp 77–89

    Google Scholar 

  • Vásquez JA (1993) Patrones de distribución de poblaciones submareales de Lessonia trabeculata (Laminariales, Phaeophyta) en el norte de Chile. Serie Ocasional Facultad de Ciencias del Mar, Universidad Católica del Norte 2:187–211

    Google Scholar 

  • Vásquez JA (1995) Ecological effects of brown seaweed harvesting. Bot Mar 38:251–257

    Article  Google Scholar 

  • Vásquez JA (2008) Production, use and fate of Chilean brown seaweeds: re-sources for a sustainable fishery. J Appl Phycol 20:457–467

    Article  Google Scholar 

  • Vásquez JA (2010) Evaluación de la biomasa de praderas naturales y prospección de potenciales lugares de repoblamiento de algas pardas en la costa de la XV, I y II regiones. Informe Final Proyecto FIP 2008-38 160 pp

  • Vásquez JA, Buschmann AH (1997) Herbivory–kelp interactions in subtidal Chilean communities: a review. Rev Chil Hist Nat 70:41–52

    Google Scholar 

  • Vásquez JA, Fonck E (1994) Algas productoras de ácido algínico en Sudamérica: diagnóstico y proyecciones. In: Documento de Campo Nº 13 Situación actual de la industria de macroalgas productoras de ficocoloides en América Latina y el Caribe. FAO- Italia. Programa Cooperativo Gubernamental: 17–26

  • Vásquez JA, Piaget N (2011) Management and sustainability of Chilean brown seaweed fishery. Proceeding of 4th Congress of the International Society for Applied Phycology, June 19–24, 2011, Halifax, Canada: 39

  • Vásquez JA, Santelices B (1984) Comunidades de macroinvertebrados en discos adhesivos de Lessonia nigrescens Bory (Phaeophyta) en Chile central. Rev Chil Hist Nat 57:131–154

    Google Scholar 

  • Vásquez JA, Tala F (1995) Experimental repopulation of Lessonia nigrescens (Phaeophyta, Laminariales) in intertidal areas of northern Chile. J Appl Phycol 7:347–349

    Article  Google Scholar 

  • Vásquez JA, Vega JMA (2004) El Niño 1997–1998 en el norte de Chile: efectos en la estructura y en la organización de comunidades submareales dominadas por algas pardas. In: Avaria S, Carrasco J, Rutland J, Yañez E (eds) El Niño–La Niña 1997–2000 sus efectos en Chile. Valparaíso, CONA, pp 119–135

    Google Scholar 

  • Vásquez JA, Vega JMA (2005) Macroinvertebrados asociados a discos de adhesión de algas pardas: biodiversidad de comunidades discretas como indicadora de perturbaciones locales y de gran escala. Cuarta parte. Capítulo XII. En. In: Figueroa E (ed) Biodiversidad Marina: Valoración, uso y perspectivas. ¿Hacia donde va Chile? Editorial Universitaria, Santiago, pp 429–450

    Google Scholar 

  • Vásquez JA, Fonck E, Vega JMA (2001) Diversidad, abundancia y variabilidad temporal de ensambles de macroalgas del submareal rocoso del norte de Chile. In: Alveal K, Antezana T (eds) Sustentabilidad de la Biodiversidad. Un problema actual: Bases científico técnicas, teorizaciones y proyecciones. Universidad de Concepción, Chile, pp 351–365

    Google Scholar 

  • Vásquez JA, Vega JMA, Buschmann AH (2006) Long term variability in the structure of kelp communities in northern Chile and the 1997–98 ENSO. J Appl Phycol 18:505–519

    Article  Google Scholar 

  • Vea J, Ask E (2011) Creating a sustainable commercial harvest of Laminaria hyperborea, in Norway. J Appl Phycol 23:489–494

    Article  Google Scholar 

  • Vega JMA, Vásquez JA, Buschmann AH (2005) Population biology of the subtidal kelps Macrocystis integrifolia and Lessonia trabeculata (Laminariales, Phaeophyceae) in an upwelling ecosystem of northern Chile: interannual variability and El Niño 1997–98. Rev Chil Hist Nat 78:33–50

    Google Scholar 

  • Werlinger C, Alveal K (1988) Evaluación de algas en ambientes restringidos del Golfo de Arauco (Chile): Punta Fuerte Viejo a Río Tubul. Gayana Bot 45(1–4):461–474

    Google Scholar 

  • Westermeier R, Patinov D, Muller DG (2007) Sexual compatibility and hybrid formation between the giant kelp species Macrocystis pyrifera and M. integrifolia (Laminariales, Phaeophyceae) in Chile. J Appl Phycol 19:215–221

    Article  Google Scholar 

  • Wolff R, Zimmermann D, Weber M, Feilen P, Ehrhart F, Salinas-Jungjohann M, Katsen A, Behringer M, Geßner P, Plieb L, Steinbach A, Spitz VJA, Schneider S, Bamberg E, Weber MM, Zimmermann U, Zimmermann H (2005) Real-time 3-D dark-field microscopy for the validation of the cross-linking process of alginate microcapsules. Biomaterials 26:6386–6393

    Article  Google Scholar 

  • Zimmermann H, Zimmermann D, Reuss R, Feilen PJ, Manz B, Katsen A, Weber M, Ihmig FR, Ehrhart F, Gessner P, Behringer M, Steinbach A, Wegner L, Sukhorukor VL, Vasquez JA, Schneider S, Weber M, Volke F, Wolf R, Zimmermann U (2005) Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Mater Sci Mater Med 16:491–501

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H, Wahlisch F, Baier C, Westhoff M, Reuss R, Zimmermann D, Behringer M, Ehrhart F, Katsen-Globa A, Giese C, Marx U, Sukhorukov VL, Vásquez JA, Jakob P, Shirley SG, Zimmermann U (2007) Physical and biological properties of barium cross-linked alginate membranes. Biomaterials 28:1327–1345

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Fondo de Investigación Pesquera FIP-Chile for supporting the project FIP-2006-25, FIP 2008-38 to JAV. Raúl Ugarte, Martin Thiel, and two anonymous reviewers provided valuable discussion and comments. Additional support from COPRAM Marine Seaweed Producers-Chile is deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Vásquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vásquez, J.A., Piaget, N. & Vega, J.M.A. The Lessonia nigrescens fishery in northern Chile: “how you harvest is more important than how much you harvest”. J Appl Phycol 24, 417–426 (2012). https://doi.org/10.1007/s10811-012-9794-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9794-4

Keywords

Navigation