Skip to main content

Advertisement

Log in

Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Numerous life cycle analysis (LCA) studies of microalgae to fuel have been released over the past 3 years in an attempt to determine the environmental sustainability of this novel concept. Despite numerous issues with these LCA studies, they have highlighted that cultivation and dewatering/drying for extraction and conversion are major energy sinks within the process. This paper provides a critical review of extraction and conversion methods discussed in literature and under commercial investigation. The basis of this review is energy consumption, with its purpose to highlight methods that deserve further attention in research and development. This review concludes with an energetic assessment of four conversion processes including pulsed electric field-assisted extraction followed by transesterification, in situ acid catalysed esterification of dry biomass, in situ hydrolysis and esterification of wet biomass and hydrothermal liquefaction. The analysis highlighted that energetically feasible methods do exist for the conversion of microalgal biomass to fuel; however, all require further research to be applied at commercial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Babich IV, van der Hulst M, Lefferts L, Moulijn JA, O’Connor P, Seshan K (2011) Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy 35:3199–3207

    Article  CAS  Google Scholar 

  • Balasubramanian S, Allen JD, Kanitkar A, Boldor D (2011) Oil extraction from Scenedesmus obliquus using a continuous microwave system—design, optimization, and quality characterization. Bioresour Technol 102:3396–3403

    Article  PubMed  CAS  Google Scholar 

  • Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44:7975–7980

    Article  PubMed  CAS  Google Scholar 

  • Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225

    Article  PubMed  CAS  Google Scholar 

  • Bjornsson WJ, MacDougall KM, Melanson JE, O’Leary SJB, McGinn PJ (2011) Pilot-scale supercritical carbon dioxide extractions for the recovery of triacylglycerols from microalgae: a practical tool for algal biofuels research. J Appl Phycol. doi:10.1007/s10811-011-9756-2

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Borowitzka MA (2010) Carotenoid production using microorganisms. In: Ratledge C, Cohen Z (eds) Single cell oils. Microbial and algal oils. AOCS, Urbana, pp 225–240

    Google Scholar 

  • Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45:7060–7067

    Article  PubMed  CAS  Google Scholar 

  • Cameron C (2006) The Diesel Pool: a 2020 vision. Presentation at the Hart’s 11th European World Refining and Fuels Conference Brussels, 30th May to 1st June

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    Article  PubMed  CAS  Google Scholar 

  • Cescut J, Severac E, Molina-Jouve C, Uribelarrea JL (2011) Optimizing pressurized liquid extraction of microbial lipids using the response surface method. J Chromatogr A 1218:373–379

    Article  PubMed  CAS  Google Scholar 

  • Chakinala AG, Brilman DWF, van Swaaij WPM, Kersten SRA (2009) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49:1113–1122

    Article  Google Scholar 

  • Chen PH, Oswald WJ (1998) Thermochemical treatment for algal fermentation. Environ Int 24:889–897

    Article  CAS  Google Scholar 

  • Cheng CH, Du TB, Pi HC, Jang SM, Lin YH, Lee HT (2011) Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour Technol 102:10151–10153

    Article  PubMed  CAS  Google Scholar 

  • Collet P, Helias A, Lardon L, Ras M, Goy RA, Steyer JP (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102:207–214

    Article  PubMed  CAS  Google Scholar 

  • Cooney M, Young G, Nagle N (2009) Extraction of bio–oils from microalgae. Sep Purif Rev 38:291–325

    Article  CAS  Google Scholar 

  • de Boer K, Bahri PA (2011) Supercritical methanol for fatty acid methyl ester production: a review. Biomass Bioenergy 35:983–991

    Article  Google Scholar 

  • de Boer K (2010) Optimised small scale reactor technology, a new approach for the Australian biodiesel industry. PhD Thesis, Murdoch University, Perth, Western Australia

  • Demirbaş A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41:633–646

    Article  Google Scholar 

  • Dhamwichukorn S (2011) Apparatus for enhanced disruption and extraction of intracellular materials from microbial cells. PCT Patent No. WO 2011/022228 A2

  • Diversified Technologies (2010) Pulsed electric field pre-treatment of algae for oil extraction. Available from: http://www.divtecs.com/data/File/papers/PDF/pef_algae_10_web_nb.pdf

  • Doornbosch R, Steenblik R (2007) Biofuels: is the cure worse than the disease. Available from: http://www.rsc.org/images/biofuels_tcm18-99586.pdf (accessed 17 January 2012)

  • Doucha J, Lívanský K (2008) Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol 81:431–440

    Article  PubMed  CAS  Google Scholar 

  • Echevarria Parres AJDJDSJB (2011) Process and apparatus for extracting biodiesel from algae. US Patent No. 2011/0189741 A1

  • Egeberg RG, Michaelsen NH, Skyum L (2009) Novel hydrotreating technology for production of green diesel. Lyngby, Denmark: Haldor Topsoe A/S, Available from: http://www.topsoe.com/business_areas/refining/~/media/PDF%20files/Refining/novel_hydrotreating_technology_for_production_of_green_diesel.ashx. Accessed 17 January 2012

  • Ehimen EA, Sun ZF, Carrington CG (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89:677–684

    Article  CAS  Google Scholar 

  • Ehimen EA, Sun ZF, Carrington CG, Birch EJ, Eaton-Rye JJ (2011) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energy 88:3454–3463

    Article  CAS  Google Scholar 

  • Eikani MH, Golmohammad F, Rowshanzamir S (2007) Subcritical water extraction of essential oils from coriander seeds (Coriandrum sativum L.). J Food Eng 80:735–740

    Article  CAS  Google Scholar 

  • Eisentraut A (2010) Sustainable production of second generation biofuels—OECD/IEA 2010: International Energy Agency, Available from: http://www.iea.org/papers/2010/second_generation_biofuels.pdf. Accessed 17 January 2012

  • Elliott DC, Sealock LJ (1996) Chemical processing in high-pressure aqueous environments: low-temperature catalytic gasification. Chem Eng Res Des 74:563–566

    CAS  Google Scholar 

  • Elliott DC, Neuenschwander G, Hart T, Rotness LJ, Zacher AH, Santosa DM, Valkenburg C, Jones SB, Tjokro Rahardjo SA (2009) Catalytic hydrothermal gasification of lignin-rich biorefinery residues and algae. Pacific Northwest National Laboratory, Report PNLL-18944. pp 25

  • Evodos (2011) Totally, Dewatering Algae. Alive. Available from: http://www.evodos.eu/fileadmin/PDF/evodos_brochure_algae.pdf. Accessed 16 January 2012

  • Feng W, van der Kooi HJ, de Swaan AJ (2004) Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chem Eng Process 43:1459–1467

    Article  CAS  Google Scholar 

  • Fishman D, Majumdar R, Morello J, Pate R, Yang J (2010) National algal biofuels technology roadmap. US Department of Energy, Office of Energy Efficiency and Renewable Energy Office of the Biomass Program, Available from: http://www1.eere.energy.gov/biomass/pdfs/algal_biofuels_roadmap.pdf

  • GEA (2011) Algal Cell Disruption. http://www.niroinc.com/gea_liquid_processing/algae_cells_disruption.asp. Accessed 3 January 2012

  • Goudriaan F, Naber J, Van den Berg E (2005) Conversion of biomass residues to transportation fuels with the HTU process Available from: http://www.adktroutguide.com/files/HTU_Process.pdf. Accessed 3 January 2012

  • Goudriaan F, van de Beld B, Boerefijn FR, Bos GM, Naber JE, van der Wal S, Zeevalkink JA (2008) Thermal efficiency of the HTU® process for biomass liquefaction. In: Bridgewater AV (ed) Progress in thermochemical biomass conversion. Blackwell, Oxford, pp 1312–1325

    Google Scholar 

  • Guderjan M, Elez-Martínez P, Knorr D (2007) Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innov Food Sci Emerg Technol 8:55–62

    Article  CAS  Google Scholar 

  • Herrero M, Cifuentes A, Ibañez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chem 98:136–148

    Article  CAS  Google Scholar 

  • Hielscher Ultrasonics GmbH (2011) Biodiesel from algae using ultrasonication. http://www.hielscher.com/ultrasonics/algae_extraction_01.htm. Accessed 3 January 2012

  • Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404

    Article  CAS  Google Scholar 

  • Huo H, Wang M, Bloyd C, Putsche V (2008) Life cycle assessment of energy and greenhouse gas effects of soybean-derived biodiesel and renewable fuels: Argonne National Laboratory Report ANL/ESD/08-2, 89 pp. Available from: http://www.transportation.anl.gov/pdfs/AF/467.pdf

  • Johnson MB, Wen ZY (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183

    Article  CAS  Google Scholar 

  • Koberg M, Cohen M, Ben-Amotz A, Gedanken A (2011) Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresour Technol 102:4265–4269

    Article  PubMed  CAS  Google Scholar 

  • Larach MC (2010) Continuous cultivation, harvesting and oil extraction of photosynthetic cultures. PCT Patent No. WO 2010/017243 A1

  • Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  PubMed  CAS  Google Scholar 

  • Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77

    Article  PubMed  CAS  Google Scholar 

  • Levine RB, Pinnarat T, Savage PE (2010) Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuel 24:5235–5243

    Article  CAS  Google Scholar 

  • Li Y, Lian S, Tong D, Song R, Yang W, Fan Y, Qing R, Hu C (2011) One-step production of biodiesel from Nannochloropsis sp on solid base Mg–Zr catalyst. Appl Energy 88:3313–3317

    Article  CAS  Google Scholar 

  • Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 356:328–334

    Article  CAS  Google Scholar 

  • Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol 113:539–547

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  PubMed  CAS  Google Scholar 

  • Minowa T, Sawayama S (1999) A novel microalgal system for energy production with nitrogen cycling. Fuel 78:1213–1215

    Article  CAS  Google Scholar 

  • Minowa T, S-y Y, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738

    Article  CAS  Google Scholar 

  • Mittelbach M, Remschmidt C (2006) Biodiesel the comprehensive handbook. Martin Mittelbach, Vienna

    Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  PubMed  CAS  Google Scholar 

  • Oil World (2008) December 12th No. 50 Vol. 51. Oil World Monthly, Available from: ISTA Mielke GmbH

  • Patil PD, Gude VG, Mannarswamy A, Cooke P, Munson-McGee S, Nirmalakhandan N, Lammers P, Deng S (2011a) Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresour Technol 102:1399–1405

    Article  PubMed  CAS  Google Scholar 

  • Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N (2011b) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102:118–122

    Article  PubMed  CAS  Google Scholar 

  • Poenie M, Jones J, Beach J (2011) Immobilized resins for algal oil extraction. PCT Patent No. WO 2011/047084 A2

  • Prabakaran P, Ravindran AD (2011) A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett Appl Microbiol 53:150–154

    Article  PubMed  CAS  Google Scholar 

  • Ranjan A, Patil C, Moholkar VS (2010) Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res 49:2979–2985

    Article  CAS  Google Scholar 

  • Ras M, Lardon L, Bruno S, Bernet N, Steyer JP (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102:200–206

    Article  PubMed  CAS  Google Scholar 

  • Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88:3507–3514

    Article  CAS  Google Scholar 

  • Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714

    Article  CAS  Google Scholar 

  • Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17:33–39

    Article  CAS  Google Scholar 

  • Schwede S, Kowalczyk A, Gerber M, Span R (2011) Influence of different cell disruption techniques on mono digestion of algal biomass. Paper presented at the World Renewable Energy Congress, Linkoping, Sweden, 8–13 May

  • Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998a). Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. National Renewable Energy Laboratory Report NREL/SR-580-24089

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998b) A look back at the U.S. Department of Energy’s Aquatic Species Program—biodiesel from algae: National Renewable Energy Laboratory Report NREL/TP-580-24190. pp 389

  • Sheng J, Vannela R, Rittmann BE (2011) Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803. Environ Sci Technol 45:3795–3802

    Article  PubMed  CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Kumar A (2011) Pulsed electric fields, processing and application in dood industry. Eur J Food Res Rev 1:71–93

    Google Scholar 

  • Soto Ayala R, Luque de Castro MD (2001) Continuous subcritical water extraction as a useful tool for isolation of edible essential oils. Food Chem 75:109–113

    Article  CAS  Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128

    Article  PubMed  CAS  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24:4062–4077

    Article  CAS  Google Scholar 

  • Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy 88:3499–3506

    Article  CAS  Google Scholar 

  • Swanson RM, Platon A, Satrio JA, Brown RC (2010) Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel 89(Suppl 1):S11–S19

    Article  CAS  Google Scholar 

  • Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Pet Inst 48:251–259

    Article  CAS  Google Scholar 

  • Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102:2724–2730

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Brilman DWF, Withag JAM, Brem G, Kersten S (2011) Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour Technol 102:5113–5122

    Article  PubMed  CAS  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2011a) Anaerobic digestion of Scenedesmus obliquus and Phaeodactylum tricornutum. Appl Energy 92:733–738

    Article  Google Scholar 

  • Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011b) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102:1149–1158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Centre for Research into Energy for Sustainable Transport (Western Australian State Government) and Murdoch University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karne de Boer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, K., Moheimani, N.R., Borowitzka, M.A. et al. Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24, 1681–1698 (2012). https://doi.org/10.1007/s10811-012-9835-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9835-z

Keywords

Navigation