Skip to main content
Log in

The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The addition of bicarbonate (NaHCO3; 0, 1, or 2 g L−1) to microalgal cultures has been evaluated for two species (Tetraselmis suecica and Nannochloropsis salina) in respect of growth and biochemical composition. In batch cultures, addition of bicarbonate (1 g L−1) resulted in significantly (P < 0.05) higher final mean cell abundances for both species. No differences in specific growth rates (SGRs) were recorded for T. suecica between treatments; however, increasing bicarbonate addition decreased SGR values in N. salina cultures. Bicarbonate addition (1 g L−1) significantly improved nitrate utilisation from the external media and photosynthetic efficiency (F v /F m ) in both species. For both T. suecica and N. salina, bicarbonate addition significantly increased the cellular concentrations of total pigments (3,432–3,587 and 19–37 fg cell−1, respectively) compared to cultures with no additional bicarbonate (1,727 and 11 fg cell−1, respectively). Moreover, final concentrations of total cellular fatty acids in T. suecica and N. salina cultures supplemented with 2 g L−1 bicarbonate (7.6 ± 1.2 and 1.8 ± 0.1 pg cell−1, respectively) were significantly higher than those cells supplemented with 0 or 1 g L−1 bicarbonate (3.2–3.5 and 0.9–1.0 pg cell−1, respectively). In nitrate-deplete cultures, bicarbonate addition caused species-specific differences in the rate of cellular lipid production, rates of change in fatty acid composition and final lipid levels. In summary, the addition of sodium bicarbonate is a viable strategy to increase cellular abundance and concentrations of pigments and lipids in some microalgae as well as the rate of lipid accumulation in nitrate-deplete cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15:584–593.

    Article  CAS  Google Scholar 

  • Alonso DL, Belarbi EH, Fernandez-Sevilla JM, Rodriguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471

    Article  PubMed  CAS  Google Scholar 

  • Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  • Barlow RG, Cummings DG, Gibb SW (1997) Improved resolution of mono- and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC. Mar Ecol Prog Ser 161:303–307

    Article  CAS  Google Scholar 

  • Berge J-P, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. In: Scheper T (ed) Marine biotechnology I: Advances in biochemical engineering/biotechnology, vol 96. Springer, Berlin, pp 49–125

    Google Scholar 

  • Bozzo GG, Colman B, Matsuda Y (2000) Active transport of CO2 and bicarbonate is induced in response to external CO2 concentration in the green alga Chlorella kessleri. J Exp Bot 51:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Brewer PG, Riley JP (1965) The automatic determination of nitrate in sea water. Deep-Sea Res 12:765–772

    CAS  Google Scholar 

  • Carvalho AP, Malcata FX (2005) Optimization of omega-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Mar Biotechnol 7:381–388

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Durbin EG (1994) Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar Ecol Prog Ser 109:83–94

    Article  Google Scholar 

  • Chi ZY, O'Fallon JV, Chen SL (2011) Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 29:537–541

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  PubMed  CAS  Google Scholar 

  • Chu WL, Phang SM, Goh SH (1996) Environmental effects on growth and biochemical composition of Nitzchia inconspicua Grunow. J Appl Phycol 8:389–396

    Article  CAS  Google Scholar 

  • Colman B, Gehl KA (1983) Physiological characteristics of photosynthesis in Porphyridium cruentum: evidence for bicarbonate transport in unicellular red alga. J Phycol 19:216–219

    Article  CAS  Google Scholar 

  • Dason JS, Huertas IE, Colman B (2004) Source of inorganic carbon for photosynthesis in two marine dinoflagellates. J Phycol 40:285–292

    Article  CAS  Google Scholar 

  • Davidson BS (1995) New dimensions in natural products research: cultured marine microorganisms. Curr Opin Biotechnol 6:284–291

    Article  CAS  Google Scholar 

  • Forjan E, Garbayo I, Casal C, Vilchez C (2007) Enhancement of carotenoid production in Nannochloropsis by phosphate and sulphur limitation. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Badajoz, pp 356–364

    Google Scholar 

  • Gardner RD, Cooksey KE, Mus F, Macur R, Moll K, Eustance E, Carlson RP, Gerlach R, Fields MW, Peyton BM (2012) Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum. J Appl Phycol. doi:10.1007/s10811-011-9782-0

  • Giordano M, Beardall J, Raven J (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  PubMed  CAS  Google Scholar 

  • Goes JI, Handa N, Taguchi S, Hama T (1994) Effect of UV-B radiation on the fatty acid composition of the marine phytoplankton Tetraselmis sp.: relationship to cellular pigments. Mar Ecol Prog Ser 114:259–274

    Article  CAS  Google Scholar 

  • Gordillo FJL, Goutx M, Figueroa FL, Xavier Niell F (1998) Effect of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. J Appl Phycol 10:135–144

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J Roy Soc Interface 7(46):703–726

    Article  CAS  Google Scholar 

  • Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J Phycol 26:72–79

    Article  CAS  Google Scholar 

  • Guiheneuf F, Mimouni V, Ulmann L, Tremblin G (2008) Environmental factors affecting growth and omega 3 fatty acid composition in Skeletonema costatum. The influences of irradiance and carbon source. Diatom Res 23:93–103

    Article  Google Scholar 

  • Guiheneuf F, Mimouni V, Ulmann L, Tremblin G (2009) Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J Exp Mar Biol Ecol 369:136–143

    Article  CAS  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum, New York, pp 26–60

    Google Scholar 

  • Healey FP (1979) Short-term responses of nutrient-deficient algae to nutrient addition. J Phycol 15:289–299

    Article  CAS  Google Scholar 

  • Hodgson PA, Henderson RJ, Sargent JR, Leftley JW (1991) Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture I. The growth cycle. J Appl Phycol 3:169–181

    Article  CAS  Google Scholar 

  • Hsueh HT, Chu H, Yu ST (2007) A batch study on the biofixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 66:878–886

    Article  PubMed  CAS  Google Scholar 

  • Hu HH, Gao KS (2003) Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol Lett 25:421–425

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Sommerfield M, Jarvis EE, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Huertas IE, Lubian LM (1998) Comparative study of dissolved inorganic carbon utilization and photosynthetic responses in Nannochloris (Chlorophyceae) and Nannochloropsis (Eustigmatophyceae) species. Can J Bot 76:1104–1108

    CAS  Google Scholar 

  • Huertas IE, Colman B, Espie GS (2002a) Inorganic carbon acquisition and its energization in eustigmatophyte algae. Funct Plant Biol 29:271–277

    Article  CAS  Google Scholar 

  • Huertas IE, Colman B, Espie GS (2002b) Mitochondrial-driven bicarbonate transport supports photosynthesis in a marine microalgae. Pl Physiol 130:284–291

    Article  CAS  Google Scholar 

  • Jayasankar R, Valsala KK (2008) Influence of different concentrations of sodium bicarbonate on growth rate and chlorophyll content of Chlorella salina. J Mar Biol Assoc India 50:74–78

    Google Scholar 

  • Jeffrey SW, Mantoura RFC, Wright SW (1997) Phytoplankton pigments in oceanography: guidelines to modern methods, vol 10. Monographs on oceanographic methodology. UNESCO Publishing, Paris

    Google Scholar 

  • Karlson B, Potter D, Kuylenstierna M, Andersen RA (1996) Ultrastructure, pigment composition, and 18S rRNA gene sequence for Nannochloropsis granulata sp. nov. (Monodopsidaceae, Eustigmatophyceae), a marine ultraplankter isolated from the Skagerrak, northeast Atlantic Ocean. Phycologia 35:253–260

    Article  Google Scholar 

  • Khozin-Goldberg I, Iskandarov U, Cohen Z (2011) LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol 91:905–915

    Article  PubMed  CAS  Google Scholar 

  • Kolber ZS, Prášil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106

    Article  PubMed  CAS  Google Scholar 

  • Larson TR, Rees TAV (1996) Changes in cell composition and lipid metabolism mediated by sodium and nitrogen availability in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 32:388–393

    Article  CAS  Google Scholar 

  • Larsson M, Larsson CM, Guerrero MG (1985) Photosynthetic nitrogen metabolism in high CO2 and low CO2-adapted Scenedesmus. J Exp Bot 36:1373–1386

    Article  CAS  Google Scholar 

  • Lavigne H, Gattuso J-P (2011) Seacarb: seawater carbonate chemistry with R. R package version 2.4. http://CRAN.R-project.org/package=seacarb

  • Li Q, Du W, Liu DH (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    Article  PubMed  CAS  Google Scholar 

  • Lombardi AT, Wangersky PJ (1991) Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar Ecol Prog Ser 77:39–47

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Merrett MJ, Nimer NA, Dong LF (1996) The utilisation of bicarbonate ions by the marine microalga Nannochloropsis oculata (Droop) Hibberd. Plant Cell Environ 19:478–484

    Article  CAS  Google Scholar 

  • Mouradian EA, LKlyachko-Gurvich GL, Pronina N (1998) Lipid metabolism of Spirulina platensis under CO2-stress. In: Sanchez J, Cerda-Olmedo E, Martinez-Force E (eds) Advances in plant lipid research. Universidad de Sevilla, Spain, pp 511–513

    Google Scholar 

  • Muradyan EA, Klyachko-Gurvich GL, Tsoglin LN, Sergeyenko TV, Pronina NA (2004) Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russ J Plant Phyiol 51:53–62

    Article  CAS  Google Scholar 

  • Nimer NA, IglesiasRodriguez MD, Merrett MJ (1997) Bicarbonate utilization by marine phytoplankton species. J Phycol 33:625–631

    Article  CAS  Google Scholar 

  • Norsker NH, Barbosa MJ, Vermue MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29:24–27

    Article  PubMed  CAS  Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441

    Article  PubMed  CAS  Google Scholar 

  • Parrish CC, Wangersky PJ (1987) Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Mar Ecol Prog Ser 35:119–128

    Article  CAS  Google Scholar 

  • Pimolrat P, Direkbusarakom S, Chinajariyawong C, Powtongsook S (2010) The effect of sodium bicarbonate concentrations on growth and biochemical composition of Chaetoceros gracilis Schutt. Kasetsart Univ Fish Res Bull 34:40–47

    Google Scholar 

  • Plaza M, Herrero M, Cifuentes A, Ibanez E (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57:7159–7170

    Article  PubMed  CAS  Google Scholar 

  • Plaza M, Santoyo S, Jaime L, Reina GGB, Herrero M, Senorans FJ, Ibanez E (2010) Screening for bioactive compounds from algae. J Pharm Biomed Anal 51:450–455

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1991) Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature. Plant Cell Environ 14:779–794

    Article  CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    Article  CAS  Google Scholar 

  • Rigobello-Masini M, Aidar E, Masini JC (2003) Extra and intracelular activities of carbonic anhydrase of the marine microalga Tetraselmis gracilis (Chlorophyta). Braz J Microbiol 34:267–272

    Article  CAS  Google Scholar 

  • Ruivo M, Amorim A, Cartaxana P (2011) Effects of growth phase and irradiance on phytoplankton pigment ratios: implications for chemotaxonomy in coastal waters. J Plankton Res 33:1012–1022

    Article  CAS  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  PubMed  CAS  Google Scholar 

  • Sergeenko TV, Muradyan EA, Pronina NA, Klyachko-Gurvich GL, Mishina IM, Tsoglin LN (2000) The effect of extremely high CO2 concentration on the growth and biochemical composition of microalgae. Russ J Plant Physiol 47:632–638

    CAS  Google Scholar 

  • Shifrin NS, Chrisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17:374–384

    Article  CAS  Google Scholar 

  • Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson YH, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:1–17

    Article  Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  PubMed  CAS  Google Scholar 

  • Siron R, Giusti G, Berland B (1989) Changes in the fatty-acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorous deficiency. Mar Ecol Prog Ser 55:95–100

    Article  CAS  Google Scholar 

  • Skirrow G (1975) The dissolved gases carbon dioxde. In: Riley JP, Skirrow G (eds) Chemical oceanography. Academic, London, pp 1–92

    Google Scholar 

  • Sostaric M, Golob J, Bricelj M, Klinar D, Pivec A (2009) Studies on the growth of Chlorella vulgaris in culture media with different carbon sources. Chem Biochem Eng Q 23:471–477

    CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  PubMed  CAS  Google Scholar 

  • Su CH, Chien LJ, Gomes J, Lin YS, Yu YK, Liou JS, Syu RJ (2011) Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23:903–908

    Article  CAS  Google Scholar 

  • Suen Y, Hubbard JS, Holzer G, Tornabene TG (1987) Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes J Phycol 23:289–296

    CAS  Google Scholar 

  • Sukenik A, Livne A (1991) Variations in lipid and fatty acid content in relation to acetyl CoA carboxylase in the marine prymnesiophyte Isochrysis galbana. Plant Cell Physiol 32:371–378

    CAS  Google Scholar 

  • Sukenik A, Tchernov D, Kaplan A, Huertas E, Lubian LM, Livne A (1997) Uptake, efflux, and photosynthetic utilization of inorganic carbon by the marine eustigmatophyte Nannochloropsis sp. J Phycol 33:969–974

    Article  CAS  Google Scholar 

  • Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5:435–440

    Article  CAS  Google Scholar 

  • Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A (1990) Effects of CO2 concentration during growth on fatty acid composition in microalgae. Plant Physiol 93:851–856

    Article  PubMed  CAS  Google Scholar 

  • Ungsethaphand T, Peerapornpisal Y, Whangchai N (2009) Production of Spirulina platensis using dry chicken manure supplemented with urea and sodium bicarbonate. Maejo Int J Sci Technol 3(3):379–387

    Google Scholar 

  • Vilchez C, Forjan E, Cuaresma M, Bedmar F, Garbayo I, Vega JM (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333

    Article  PubMed  CAS  Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  PubMed  CAS  Google Scholar 

  • Williams PJL, Laurens LML (2010) Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics & economics. Energ Env Sci 3:554–590

    Article  CAS  Google Scholar 

  • Xia J-R, Gao K-S (2005) Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green microalgae. J Integr Plant Biol 47:668–675

    Article  CAS  Google Scholar 

  • Yang Y, Gao KS (2003) Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reihardtii, Chlorella pyrenoidosa and Scenesdesmus obliquus (Chlorophyta). J Appl Phycol 15:379–389

    Article  CAS  Google Scholar 

  • Yeh KL, Chang JS, Chen WM (2010) Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng Life Sci 10:201–208

    Article  CAS  Google Scholar 

  • Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57:419–425

    PubMed  CAS  Google Scholar 

  • Young E, Beardall J, Giordano M (2001) Inorganic carbon acquisition by Dunaliella tertiolecta (Chlorophyta) involves external carbonic anhydrase and direct HCO 3 utilization insensitive to the anion exchange inhibitor DIDS. Eur J Phycol 36:81–88

    Google Scholar 

  • Zhang JZ, Chi J (2002) Automated analysis of nanomolar concentrations of phosphate in natural waters, with liquid waveguide. Environ Sci Technol 36:1048–1053

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Helen Findlay and Victor Martinez-Vincente for their assistance in the calculation of DIC species and pigment analyses, respectively. This work was funded by the UK's Carbon Trust ‘Algal Biofuels Challenge’ programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, D.A., Pagarette, A., Rooks, P. et al. The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. J Appl Phycol 25, 153–165 (2013). https://doi.org/10.1007/s10811-012-9849-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9849-6

Keywords

Navigation