Skip to main content

Advertisement

Log in

Development and comparison of stream indices of biotic integrity using diatoms vs. non-diatom algae vs. a combination

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Stream algal indices of biotic integrity (IBIs) are generally based entirely or largely on diatoms, because non-diatom (“soft”) algae can be difficult to quantify and taxonomically challenging, thus calling into question their practicality and cost-effectiveness for use as bioindicators. Little has been published rigorously evaluating the strengths of diatom vs. soft algae-based indices, or how they compare to indices combining these assemblages. Using a set of ranked evaluation criteria, we compare indices of biotic integrity (IBIs) (developed for southern California streams) that incorporate different combinations of algal assemblages. We split a large dataset into independent “calibration” and “validation” subsets, then used the calibration subset to screen candidate metrics with respect to degree of responsiveness to anthropogenic stress, metric score distributions, and signal-to-noise ratio. The highest-performing metrics were combined into a total of 25 IBIs comprising either single-assemblage metrics (based on either diatoms or soft algae, including cyanobacteria) or combinations of metrics representing the two assemblages (for “hybrid IBIs”). Performance of all IBIs was assessed based on: responsiveness to anthropogenic stress (in terms of surrounding land uses and a composite water-chemistry gradient) using the validation data, and evaluated based on signal-to-noise ratio, metric redundancy, and degree of indifference to natural gradients. Hybrid IBIs performed best overall based on our evaluation. Single-assemblage IBIs ranked lower than hybrids vis-à-vis the abovementioned performance attributes, but may be considered appropriate for routine monitoring applications. Trade-offs inherent in the use of the different algal assemblages, and types of IBI, should be taken into consideration when designing an algae-based stream bioassessment program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboal M, Puig MA, Mateo P, Perona E (2002) Implications of cyanophyte toxicity on biological monitoring of calcareous streams in north-east Spain. J Appl Phycol 14:49–56

    Article  Google Scholar 

  • Bahls LL (1993) Periphyton bioassessment methods for Montana streams. Montana Water Quality Bureau, Department of Health and Environmental Science, Helena, USA

    Google Scholar 

  • Barbour MT, Gerritsen J, White JS (1996) Development of the Stream Condition Index (SCI) for Florida. Florida Department of Environmental Protection, Tallahassee, USA

    Google Scholar 

  • Cao Y, Hawkins CP, Olson J (2007) Modeling natural environmental gradients improves the accuracy and precision of diatom-based indicators. J N Am Benth Soc 26:566–585

    Article  Google Scholar 

  • Cattaneo A, Kerimian T, Roberge M, Marty J (1997) Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy. Hydrobiologia 354:101–110

    Article  CAS  Google Scholar 

  • Douterelo I, Perona E, Mateo P (2004) Use of cyanobacteria to assess water quality in running waters. Environ Pollut 127:377–384

    Article  PubMed  CAS  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Fernandez-Piñas F, Leganés F, Mateo P, Bonilla I (1991) Blue-green algae (cyanobacteria) as indicators of water quality in two Spanish rivers. In: Whitton BA, Rott E, Friedrich G (eds) Use of algae for monitoring rivers. Institut für Botanik, Universität Innsbruck, Innsbruck, pp 151–156

    Google Scholar 

  • Fetscher AE, Busse LB, Ode PR (2009) Standard operating procedures for collecting stream algae samples and associated physical habitat and chemical data for ambient bioassessments in California. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 002

  • Fore LS (2003) Developing biological indicators: Lessons learned from mid-Atlantic streams. EPA 903/R-003/003. U.S. Environmental Protection Agency, Office of Environmental Information and Mid-Atlantic Integrated Assessment Program, Region 3, Ft. Meade, USA

    Google Scholar 

  • Fore L, Grafe C (2002) Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.). Freshw Biol 47:2015–2037

    Article  Google Scholar 

  • Griffith MB, Hill BH, Herlihy AT, Kaufmann PR (2002) Multivariate analysis of periphyton assemblages in relation to environmental gradients in Colorado Rocky Mountain streams. J Phycol 38:83–95

    Article  Google Scholar 

  • Guasch H, Paulsson M, Sabater S (2002) Effect of copper on algal communities from oligotrophic calcareous streams. J Phycol 38:241–248

    Article  CAS  Google Scholar 

  • Gutowski A, Foerster J, Schaumburg J (2004) The use of benthic algae, excluding diatoms and Charales, for the assessment of the ecological status of running waters: a case history from Germany. Oceanol Hydrobiol Stud 33:3–15

    CAS  Google Scholar 

  • Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44:1–12

    Article  PubMed  CAS  Google Scholar 

  • Hering D, Feld CK, Moog O, Ofenböck T (2006) Cook book for the development of a multimetric index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566:311–324

    Article  Google Scholar 

  • Hill BH, Herlihy AT, Kaufmann PR, Stevenson RJ, McCormick FH, Burch Johnson C (2000) Use of periphyton assemblage data as an index of biotic integrity. J N Am Benth Soc 19:50–67

    Article  Google Scholar 

  • Hill BH, Stevenson RJ, Pan Y, Herlihy AT, Kaufmann PR, Burch Johnson C (2001) Comparison of correlations between environmental characteristics and stream diatom assemblages characterized at genus and species levels. J N Am Benth Soc 20:299–310

    Article  Google Scholar 

  • Hughes RM, Peck DV (2008) Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. J N Am Benth Soc 27:837–859

    Article  Google Scholar 

  • John MD (2011) Order Chaetophorales, Microsporales, Ulotrichales. In: John DM, Whitton BA, Brook AJ (eds) The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge, pp 524–553

    Google Scholar 

  • John DM, Johnson LR (1991) Green microphytic algae as river water quality monitors. In: Whitton BA, Rott E, Friedrich G (eds) Use of algae for monitoring rivers. Institut für Botanik, Universität Innsbruck, Innsbruck, pp 151–156

    Google Scholar 

  • Kaufmann PR, Levine P, Robison EG, Seeliger C, Peck DV (1999) Quantifying physical habitat in wadeable streams. EPA/620/R-99/003. U.S. Environmental Protection Agency, Washington

    Google Scholar 

  • Kelly MG (2006) A comparison of diatoms with other phytobenthos as indicators of ecological status in streams in northern England. In: Witkowski A (ed) Proceedings of the 18th International Diatom Symposium. Biopress, Bristol, pp 139–151

    Google Scholar 

  • Kelly MG, King L, Jones RI, Barker PA, Jamieson BJ (2008) Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia 610:125–129

    Article  Google Scholar 

  • Klemm DJ, Blocksom KA, Thoeny WT, Fulk FA, Herlihy AT, Kaufmann PR, Cormier SM (2002) Methods development and use of macroinvertebrates as indicators of ecological conditions for streams in the Mid-Atlantic Highlands region. Env Mon Assess 78:169–212

    Article  Google Scholar 

  • Komárek J, Kling H, Komárková J (2002) Filamentous cyanobacteria. In: Wehr JH, Sheath RG (eds) Freshwater algae of North America. Ecology and classification. Academic Press, San Diego, pp 59–191

    Google Scholar 

  • Lavoie I, Vincent WF, Pienitz R, Painchaud J (2004) Benthic algae as bioindicators of agricultural pollution in the streams and rivers of southern Québec (Canada). Aquat Ecosyst Health Manage 7:43–58

    Article  CAS  Google Scholar 

  • Lavoie I, Campeau S, Grenier M, Dillon PJ (2006) A diatom-based index for the biological assessment of eastern Canadian rivers: an application of correspondence analysis (CA). Can J Fish Aquat Sci 63:1793–1811

    Article  Google Scholar 

  • Lavoie I, Campeau S, Darchambeau F, Cabana G, Dillon PJ (2008) Are diatoms good integrators of temporal variability in stream water quality? Freshw Biol 53:827–841

    Article  CAS  Google Scholar 

  • Lavoie I, Dillon PJ, Campeau S (2009) The effect of excluding diatom taxa and reducing taxonomic resolution on multivariate analyses and stream bioassessment. Ecol Ind 9:213–225

    Article  Google Scholar 

  • Leland HV, Porter SD (2000) Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshw Biol 44:279–301

    Article  Google Scholar 

  • Lowe RL, Laliberte GD (1996) Benthic stream algae: distribution and structure. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Academic Press, San Diego, pp 269–293

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software, Gleneden Beach

    Google Scholar 

  • Moulton SR, Kennen JG, Goldstein RM, Hambrook JA (2002) Revised protocols for sampling algal, invertebrate, and fish communities as part of the National Water-Quality Assessment Program. USGS Open-File Report 02–150. U.S. Geological Survey, Reston

  • Ode PR, Rehn AC, May JT (2005) A quantitative tool for assessing the integrity of southern coastal California streams. Env Manag 35:493–504

    Article  Google Scholar 

  • Palmer CM (1969) A composite rating of algae tolerating organic pollution. J Phycol 5:78–82

    Article  Google Scholar 

  • Perona E, Bonilla I, Mateo P (1998) Epilithic cyanobacterial communities and water quality: an alternative tool for monitoring eutrophication in the Alberche River (Spain). J Appl Phycol 10:183–191

    Article  Google Scholar 

  • Pipp E, Rott E (1996) Recent developments in the use of benthic algae (excluding diatoms) for monitoring rivers in Austria and Germany. In: Whitton BA, Rott E (eds) Use of algae for monitoring rivers II. Institut für Botanik, Universität Innsbruck, Innsbruck, pp 160–165

    Google Scholar 

  • Porter SD, Mueller DK, Spahr NE, Munn MD, Dubrovsky NM (2008) Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters. Freshw Biol 53:1036–1054

    Article  CAS  Google Scholar 

  • Potapova M, Charles DF (2007) Diatom metrics for monitoring eutrophication in rivers of the United States. Ecol Indic 7:48–70

    Article  Google Scholar 

  • Power ME (1990) Effects of fish in river food webs. Science 250:811–814

    Article  PubMed  CAS  Google Scholar 

  • PRISM Climate Group (2013) Oregon State University, http://prism.oregonstate.edu. Accessed 13 April 2013

  • Rott E, Hofmann G, Pall K, Pfister P, Pipp E (1997) Indikationslisten für Aufwuchsalgen in Fließgewässern in Österreich: Teil 1. Saprobielle Indication. Projekt des Bundesministeriums für Land- und Forstwirtschaft,Wasserwirtschaftskataster, f. 1–80

  • Rott E, Pipp E, Pfister P, Van Dam H, Ortler K, Binder N, Pall K (1999) Indikationslisten für Aufwuchsalgen in Österreichischen Fließgewässern: Teil 2. Trophieindication. Bundesministerium f. Land- und Forstwirtschaft, Zahl 41.034/08- IVA 1/97, Wien. f. 1–248

  • Rusanov AG, Stanislavskaya E, Ács E (2012) Periphytic algal assemblages along environmental gradients in the rivers of the Lake Ladoga basin, northwestern Russia: implication for the water quality assessment. Hydrobiologia 695:305–327

    Article  CAS  Google Scholar 

  • Schaumburg J, Schranz C, Foerster J, Gutowski A, Hofmann G, Meilinger P, Schneider S, Schmedtje U (2004) Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica 34:283–301

    Article  Google Scholar 

  • Schneider S (2011) Impact of calcium and TOC on biological acidification assessment in Norwegian rivers. Sci Total Env 409:1164–1171

    Article  CAS  Google Scholar 

  • Schneider SC, Lindstrøm E-A (2009) Bioindication in Norwegian rivers using non-diatomaceous benthic algae: the acidification index periphyton (AIP). Ecol Indic 9:1206–1211

    Article  CAS  Google Scholar 

  • Schneider SC, Lindstrøm E-A (2011) The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers. Hydrobiologia 665:143–155

    Article  CAS  Google Scholar 

  • Schneider SC, Lawniczak AE, Picińska-Faltynowicz J, Szoszkiewicz K (2012) Do macrophytes, diatoms and non-diatom benthic algae give redundant information? Results from a case study in Poland. Limnologica 42:204–211

    Article  CAS  Google Scholar 

  • Schneider SC, Kahlert M, Kelly MG (2013) Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Sci Total Env 444:73–84

    Article  CAS  Google Scholar 

  • Sheath RG (2003) Red algae. In: Wehr JD, Sheath RG (eds) Freshwater algae of North America: ecology and classification. Academic Press, San Diego, pp 197–221

    Chapter  Google Scholar 

  • Sheath RG, Cole KM (1992) Biogeography of stream macroalgae in North America. J Phycol 28:448–460

    Article  Google Scholar 

  • Sheath RG, Morison MO, Korch JE, Kaczmarczyk D, Cole KM (1986) Distribution of stream macroalgae in south-central Alaska. Hydrobiologia 135:259–269

    Article  Google Scholar 

  • Sládeček V (1973) System of water quality from the biological point of view. Arch Hydrobiol Beih Ergeb Limnol 7:1–218

    Google Scholar 

  • Spaulding SA, Lubinski DJ, Potapova M (2010) Diatoms of the United States. http://westerndiatoms.colorado.edu. Accessed 10 April 2013

  • Stancheva R, Fetscher AE, Sheath RG (2012a) A novel quantification method for stream-inhabiting, non-diatom benthic algae, and its application in bioassessment. Hydrobiologia 684:225–239

    Article  CAS  Google Scholar 

  • Stancheva R, Hall JD, Sheath RG (2012b) Systematics of the genus Zygnema (Zygnematophyceae, Charophyta) from Californian watersheds. J Phycol 48:409–422

    Article  Google Scholar 

  • Stevenson RJ, Bahls LL (1999) Periphyton protocols. In: Barbour MT, Gerritsen J, Snyder BD (eds) Rapid bioassessment protocols for use in wadeable streams and rivers: periphyton, benthic macroinvertebrates, and fish, EPA 841-B-99-002. US Environmental Protection Agency, Washington, pp 6-1–6-22

    Google Scholar 

  • Stevenson RJ, Pan Y, van Dam H (2010) Assessing environmental conditions in rivers and streams with diatoms. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge Univ. Press, Cambridge, pp 57–85

    Chapter  Google Scholar 

  • Stoddard JL, Larsen DP, Hawkins CP, Johnson RK, Norris RH (2006) Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol Appl 16:1267–1276

    Article  PubMed  Google Scholar 

  • Stoddard JL, Herlihy AT, Peck DV, Hughes RM, Whittier TR, Tarquinio E (2008) A process for creating multimetric indices for large-scale aquatic surveys. J N Am Benth Soc 27:878–891

    Article  Google Scholar 

  • van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth J Aquat Ecol 28:117–133

    Article  Google Scholar 

  • Van Der Werff A (1955) A new method of concentrating and cleaning diatoms and other organisms. Proc Int Assoc Theor Appl Limnol 12:276–277

    Google Scholar 

  • Van Sickle J (2010) Correlated metrics yield multimetric indices with inferior performance. Trans Am Fisher Soc 139:1802–1817

    Article  Google Scholar 

  • VanLandingham SL (1982) Guide to the identification, environmental requirements and pollution tolerance of bluegreen algae (Cyanophyta). EPA-600/3-82-073

  • Vis C, Hudon C, Cattaneo A, Pinel-Alloul B (1998) Periphyton as an indicator of water quality in the St. Lawrence River (Québec, Canada). Env Pollut 101:13–24

    Article  CAS  Google Scholar 

  • Wang Y-K, Stevenson RJ (2005) Development and evaluation of a diatom-based index of biotic integrity for the Interior Plateau Region, USA. J N Am Benth Soc 24:990–1008

    Article  Google Scholar 

  • Wehr JD, Sheath RG (2003) Freshwater habitats of algae. In: Wehr JD, Sheath RG (eds) Freshwater algae of North America: ecology and classification. Academic Press, San Diego, pp 11–57

    Chapter  Google Scholar 

  • Whitton BA (2012) Changing approaches to monitoring during the period of the ‘Use of Algae for Monitoring Rivers’ symposia. Hydrobiologia 695:7–16

    Article  CAS  Google Scholar 

  • Whitton BA, Mateo P (2012) Rivulariaceae. In: Whitton BA (ed) Ecology of cyanobacteria: II. Their diversity in space and time. Springer, Dordrecht, pp 561–591

    Chapter  Google Scholar 

Download references

Acknowledgments

The California State Water Resources Control Board Consolidated Grants and Surface Water Ambient Monitoring Program (SWAMP) provided funding and data. Bérengère Laslandes, Christina Vanderwerken, Karen McLaughlin, Mariska Brady, Amanda Elliott, Evan Thomas, Andrew Fields, Liesl Tiefenthaler, and Nicholas Miller assisted in the field/laboratory. The Southern California Stormwater Monitoring Coalition and SWAMP-funded Reference Condition Management Program and Perennial Stream Assessment provided data. Rebecca Schaffner, Andrew Rehn, and Jason May provided landscape data and analyses. Marco Sigala provided database assistance. Martha Sutula, Julie Berkman, John Van Sickle, Scott Rollins, Yangdong Pan, Kenneth Schiff, Danuta Bennett, and Sarah Spaulding provided advice on study design/data analysis, and Stephen Weisberg, Joshua Westfall, Scott Johnson, and two anonymous reviewers provided valuable comments that improved the manuscript. Laboratories of the University of California, Santa Barbara, Marine Science Institute and the University of Georgia Odum School of Ecology performed water chemistry analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Elizabeth Fetscher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 298 kb)

Online Resource 2

(PDF 73.5 KB)

Online Resource 3

(PDF 57.3 KB)

Online Resource 4

(PDF 736 kb)

Online Resource 5

(PDF 21 kb)

Online Resource 6

(PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fetscher, A.E., Stancheva, R., Kociolek, J.P. et al. Development and comparison of stream indices of biotic integrity using diatoms vs. non-diatom algae vs. a combination. J Appl Phycol 26, 433–450 (2014). https://doi.org/10.1007/s10811-013-0088-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0088-2

Keywords

Navigation