Skip to main content
Log in

Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A novel flat panel photobioreactor prototype with bulk liquid flow driven by an external airlift was designed, modeled, and experimentally characterized for the purpose of developing scalable industrial photobioreactors. Baffles were built inside the flat panel part of the reactor, directing the liquid bulk flow in a serpentine way, and the external airlift drove the liquid flow and facilitated gas mass transfer. The gas holdup, liquid flow velocity, and oxygen mass transfer of this prototype were experimentally determined and mathematically modeled, and the performance of the reactor was tested by cultivating two species of microalgae, Scenedesmus obliquus and Chlorella sorokiniana. The model-predicted trends correlated well with experimental data, indicating that the reactor might be scaled up using these models. A high cell concentration of C. sorokiniana was achieved under controlled indoor cultivation conditions although serious biofouling occurred in the case of S. obliquus cultivation. The results favor the possibility of scaling up the reactor to industrial scales, based on the models employed, and the potential advantages and disadvantages of the reactor are discussed regarding this industry-oriented photobioreactor configuration in comparison with current industrial photobioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acién Fernández FG, Fernández Sevilla JM, Molina Grima E (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 12:131–151

    Article  Google Scholar 

  • Acién FG, Fernández JM, Sánchez JA, Molina Grima E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56:2721–2732

    Article  Google Scholar 

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    Article  PubMed  Google Scholar 

  • Bergmann P, Ripplinger P, Beyer L, Trösch W (2013) Disposable flat panel airlift photobioreactors. Chem Ing Tech 85:202–205

    Article  CAS  Google Scholar 

  • Bitog J, Lee IB, Lee CG, Kim KS, Hwang HS, Hong SW, Seo IH, Kwon KS, Mostafa E (2011) Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Comput Electron Agric 76:131–147

    Article  Google Scholar 

  • Carvalho A, Silva S, Baptista J, Malcata F (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89:1275–1288

    Article  CAS  PubMed  Google Scholar 

  • Cerri MO, Baldacin JC, Cruz AJG, Hokka CO, Badino AC (2010) Prediction of mean bubble size in pneumatic reactors. Biochem Eng J 53:12–17

    Article  CAS  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (1989) Airlift bioreactors. Elsevier Applied Science, New York

    Google Scholar 

  • Chisti MY (1999) Mass transfer. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseperation, vol 3. Wiley, New York, pp 1607–1640

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti MY, Moo-Young M (1987) Airlift reactors: characteristics, applications, and design considerations. Chem Eng Commun 60:195–242

    Article  CAS  Google Scholar 

  • Chisti MY, Halard B, Moo-Young M (1988) Liquid circulation in airlift reactors. Chem Eng Sci 43:451–457

    Article  CAS  Google Scholar 

  • Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94

    Article  CAS  PubMed  Google Scholar 

  • Delrue F, Setier PA, Sahut C, Cournac L, Roubaud A, Peltier G, Froment AK (2012) An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol 111:191–200

    Article  CAS  PubMed  Google Scholar 

  • Dillschneider R, Posten C (2013) Closed bioreactors as tools for microalgae production. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 629–649

    Chapter  Google Scholar 

  • Green D, Perry R (2007) Perry’s chemical engineers’ handbook, 8th edn. McGraw-Hill, New York

    Google Scholar 

  • Haag A (2007) Algae bloom again. Nature 447:520–521

    Article  CAS  PubMed  Google Scholar 

  • Huang YM, Maliakal S, Cheney DP, Rorrer GL (1998) Comparison of development and photosynthetic growth for filament clumps and regenerated microplantlet cultures of Agardhiella subulata (Rhodophyta, Gigartinales). J Phycol 34:893–901

    Article  Google Scholar 

  • Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210

    Article  CAS  PubMed  Google Scholar 

  • Kliphuis AMJ, de Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH (2010) Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Prog 26:687–696

    Article  CAS  PubMed  Google Scholar 

  • Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285

    Article  CAS  PubMed  Google Scholar 

  • Leupold M, Hindersin S, Kerner M, Hanelt D (2013) The effect of discontinuous airlift mixing in outdoor flat panel photobioreactors on growth of Scenedesmus obliquus. Bioprocess Biosyst Eng 36:1653–1663

    Article  CAS  PubMed  Google Scholar 

  • Li J, Xu NS, Su WW (2003) Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochem Eng J 14:51–65

    Article  CAS  Google Scholar 

  • Li J, Zhu D, Niu J, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29:568–574

    Article  CAS  PubMed  Google Scholar 

  • Liao LH, Parlos A, Griffith P (1985) Heat transfer, carryover, and fall back in PWR steam generators during transients. Division of Accident Evaluation, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission

  • Lundquist T, Woertz I, Quinn N, Benemann J (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, University of California Berkeley, California. Final Report. (http://www.energybiosciencesinstitute.org/sites/default/files/media/AlgaeReportFINAL.pdf)

  • Molina E, Acién Fernández F, García Camacho F, Camacho Rubio F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368

    Article  Google Scholar 

  • Molina E, Fernández J, Acién F, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  CAS  PubMed  Google Scholar 

  • Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Münkel R, Schmid-Staiger U, Werner A, Hirth T (2013) Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Biotechnol Bioeng 110:2882–2893

    Article  PubMed  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  CAS  PubMed  Google Scholar 

  • Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29:24–27

    Article  CAS  PubMed  Google Scholar 

  • Petkov G, Ivanova A, Iliev I, Vaseva I (2012) A critical look at the microalgae biodiesel. Eur J Lipid Sci Technol 114:103–111

    Article  CAS  Google Scholar 

  • Qiang H, Zarmi Y, Richmond A (1998) Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur J Phycol 33:165–171

    Article  Google Scholar 

  • Quinn JC, Turner CW, Bradley TH (2012) Scale-up of flat plate photobioreactors considering diffuse and direct light characteristics. Biotechnol Bioeng 109:363–370

    Article  CAS  PubMed  Google Scholar 

  • Ratchford IAJ, Fallowfield HJ (1992) Performance of a flat plate, air-lift reactor for the growth of high biomass algal cultures. J Appl Phycol 4:1–9

    Article  Google Scholar 

  • Reyna-Velarde R, Cristiani-Urbina E, Hernández-Melchor DJ, Thalasso F, Cañizares-Villanueva RO (2010) Hydrodynamic and mass transfer characterization of a flat-panel airlift photobioreactor with high light path. Chem Eng Process: Process Intensif 49:97–103

    Article  CAS  Google Scholar 

  • Rubio FC, Fernández FGA, Pérez JAS, Camacho FG, Grima EM (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86

    Article  CAS  PubMed  Google Scholar 

  • Sánchez Mirón A, Contreras Gómez A, Garcı́a Camacho F, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270

    Article  Google Scholar 

  • Shaikh A, Al-Dahhan MH (2007) A review on flow regime transition in bubble columns. International J Chem React Eng 5 (1): art. no. R1

  • Sierra E, Acien F, Fernandez J, Garcia J, Gonzalez C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138:136–147

    Article  CAS  Google Scholar 

  • Slegers PM, Wijffels RH, van Straten G, van Boxtel AJB (2011) Design scenarios for flat panel photobioreactors. Appl Energy 88:3342–3353

    Article  CAS  Google Scholar 

  • Stein JR (ed) (1979) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge

    Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128

    Article  CAS  PubMed  Google Scholar 

  • Su WW, Li J, Xu N-S (2003) State and parameter estimation of microalgal photobioreactor cultures based on local irradiance measurement. J Biotechnol 105:165–178

    Article  CAS  PubMed  Google Scholar 

  • Ugwu C, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  PubMed  Google Scholar 

  • Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New York

    Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  PubMed  Google Scholar 

  • Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24:405–413

    Article  CAS  PubMed  Google Scholar 

  • Zhang QH, Wu X, Xue SZ, Wang ZH, Yan CH, Cong W (2013) Hydrodynamic characteristics and microalgae cultivation in a novel flat-plate photobioreactor. Biotechnol Prog 29:127–134

    Article  PubMed  Google Scholar 

  • Znad H, Bales V, Kawase Y (2004) Modeling and scale up of airlift bioreactor. Comput Chem Eng 28:2765–2777

    Article  CAS  Google Scholar 

  • Zuber N, Findlay JA (1965) Average volumetric concentration in two-phase flow systems. J Heat Transf 87:453–468

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the BEMA project (Bio-Energy from Micro-Algae, contract no. 6161, TWEED Cluster) of the Walloon Region, Belgium, and The Belgian National Fund for Scientific Research (Fonds de la Recherche Scientifique—FNRS) project PHOTOFUNDS. Philippe Demarche, Rakesh Nair, Emna Bouhajja, and Charles Junghanns are acknowledged for useful discussions and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spiros N. Agathos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 26 kb)

ESM 2

(DOC 29 kb)

ESM 3

(DOC 23 kb)

ESM 4

(DOC 29 kb)

ESM 5

(DOC 29 kb)

ESM 6

(DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Stamato, M., Velliou, E. et al. Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation. J Appl Phycol 27, 75–86 (2015). https://doi.org/10.1007/s10811-014-0335-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0335-1

Keywords

Navigation