Skip to main content
Log in

Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cultivation in Zehnder medium containing 5.1 mg L−1 zero-valent iron nanoparticles (nZVI) boosted the growth of the green algae Desmodesmus subspicatus, Dunaliella salina, Parachlorella kessleri and Raphidocelis subcapitata and the eustigmatophycean algae Nannochloropsis limnetica and Trachydiscus minutus. In the cyanobacterium Arthrospira maxima, growth stimulation occurred at 1.7–5.1 mg L−1 nZVI. In all studied microorganisms, 5.1 mg L−1 nZVI strongly enhanced lipid accumulation, decreased the content of saturated and monounsaturated fatty acids with the exception of palmitoleic acid and increased the content of polyunsaturated fatty acids in cells. The nZVI particles may provide a suitable source of iron causing increased cell growth and induce metabolic changes resulting in higher lipid production and changes in fatty acid (FA) composition. Altered lipid synthesis may reflect the oxidative action of nZVI. Further research may contribute to optimizing the economical production of oils from oleaginous microorganisms and help clarify the mechanism of nZVI action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abd El Baky HH, El-Baroty GS, Bouaid A, Martinez M, Aracil J (2012) Enhancement of lipid accumulation in Scenedesmus obliquus by optimizing CO2 and Fe3+ levels for biodiesel production. Bioresour Technol 119:429–432

    Article  CAS  PubMed  Google Scholar 

  • Adarme-Vega TC, Thomas-Hall SR, Schenk PM (2014) Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol 26:14–18

    Article  CAS  PubMed  Google Scholar 

  • Adeleye AS, Keller AA, Miller RJ, Lenihan HS (2013) Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. J Nanopart Res 15:1–18

    Google Scholar 

  • Andrews NC, Fleming MD, Gunshin H (1999) Iron transport across biologic membranes. Nutr Rev 57:114–123

    Article  CAS  PubMed  Google Scholar 

  • Bleackley MR, MacGillivray RTA (2011) Transition metal homeostasis: from yeast to human disease. Biometals 24:785–809

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125

    Article  PubMed  Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA, Shustov MV (1991) Identification of fatty acids from Cladonia lichens. Phytochemistry 30:4015–4018

    Article  Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA (1992) Fatty acids and phospholipids from lichens of the order Lecanorales. Phytochemistry 31:851–853

    Article  Google Scholar 

  • Gigova L, Ivanova N, Gacheva G, Andreeva R, Furnadzhieva S (2012) Response of Trachydiscus minutus (Xanthophyceae) to temperature and light. J Phycol 48:85–93

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Wei L, Huang Z, Yan J (2014) Effect of high ferric ion concentrations on total lipids and lipid characteristics of Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis. J Appl Phycol 26:105–114

    Article  CAS  Google Scholar 

  • Johnston BD et al (2010) Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to Fish. Environ Sci Technol 44:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17

    Article  CAS  PubMed  Google Scholar 

  • Kang NK, Lee B, Choi G-G, Moon M, Park MS, Lim J, Yang J-W (2014) Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean J Chem Eng 31:861–867

    Article  CAS  Google Scholar 

  • Kates M (1986) Techniques of lipidology: isolation, analysis and identification of lipids. In: Work TS, Work E (eds) Laboratory techniques in biochemistry and molecular biology, 2nd edn. Elsevier, Amsterdam, pp 220–223

    Google Scholar 

  • Krongkan J, Jeeraporn P, Sudaporn T, Chayakorn P, Yuwadee P (2013) Selection of some native microalgal strains for possibility of bio-oil production in Thailand. Chiang Mai J Sci 40:593–602

    Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122

    Article  CAS  Google Scholar 

  • Lukavský J, Furnadjieva S, Cepák V (2003) Toxicity of metals, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb and Zn on microalgae, using microplate bioassay 1: Chlorella kessleri, Scenedesmus quadricauda, Sc. subspicatus and Raphidocelis subcapitata (Selenastrum capricornutum). Arch Hydrobiol Suppl 149:127–141

    Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1–7

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Nemecek J, Lhotsky O, Cajthaml T (2014) Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Sci Total Environ 485:739–747

    Article  PubMed  Google Scholar 

  • Pribyl P, Cepak V, Zachleder V (2012) Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol 94:549–561

    Article  CAS  PubMed  Google Scholar 

  • Rezanka T, Lukavsky J, Nedbalova L, Sigler K (2011) Effect of nitrogen and phosphorus starvation on the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga Trachydiscus minutus. Phytochemistry 72:2342–2351

    Article  CAS  PubMed  Google Scholar 

  • Ševců A, El-Temsah YS, Joner EJ, Černík M (2011) Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ 26:271–281

    Article  PubMed  Google Scholar 

  • Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Staub R (1961) Ernährungsphysiologisch-autökologische Untersuchungen an der planktonischen Blaualge Oscillatoria rubescens DC. Schweiz Z Hydrol 23:82–198

    Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by GACR P503/11/0215 and GACR 14-00227S, by Competence Centres TE01020218 and Biorefinery Res. Centre of Competence TE 01020080 grants of the Czech Technology Agency, by the Institutional Internal Project RVO61388971, by ICT IGA project no. A2 FPBT 2014 022, and Centre for Algal Biotechnologies (Algatech) project, reg. no. CZ.1.05/2.1.00/03.0110

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolína Pádrová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pádrová, K., Lukavský, J., Nedbalová, L. et al. Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J Appl Phycol 27, 1443–1451 (2015). https://doi.org/10.1007/s10811-014-0477-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0477-1

Keywords

Navigation