Skip to main content

Advertisement

Log in

Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Pollution of aquatic environments with heavy metals from natural water is a serious problem because of the toxicity of heavy metals to humans, fish, and other live organisms. Cheap and environmentally friendly methods for removing heavy metals from water are therefore needed. Algae have emerged as a promising biosorbent to bioextract heavy metal ions by adsorption, and our objective was to evaluate the biosorption capacity and kinetics of cadmium ions by live and dead cells of the microalga Chlorella vulgaris. The biosorption of cadmium was assessed by varying the sorption parameters: use of dead or live material of C. vulgaris, contact time, initial metal ion concentration, and algal dosage. Cadmium ion removal was rapid with more than 95 % of total adsorption taking place in 5 min, and with equilibrium attained in 105 min. Chlorella vulgaris had high adsorption capacity for cadmium, with 96.8 and 95.2 % of the total amount of cadmium being removed by the dead algal and the live algal biomass, respectively. The biosorption capacity increased with increasing cadmium concentration, and the maximum adsorption capacity for cadmium at equilibrium was found to be 16.34 mg Cd(II) g−1 biomass using live C. vulgaris cells and 16.65 mg Cd(II) g−1 biomass using dead C. vulgaris cells. A positive correlation was found between the adsorption efficiency and (1) the concentration of Cd(II) until adsorption equilibrium of the live and dead C. vulgaris, and (2) with the adsorbent dosage of the live and dead C. vulgaris. The adsorption efficiency was consistently above 60 % in natural water. The kinetic data showed that a pseudo-first-order model described the sorption kinetics of Cd(II) ions by live algae better than a pseudo-second-order or an Elovich model, and use of dead algal cells was best modeled by a pseudo-second-order model. The results using both live and dead C. vulgaris fitted well to the Sips isotherm compared with other two-parameter (Langmuir, Freundlich) and three-parameter (Khan) isotherm models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmet C, Tamer A, Sibel T, Ozge T (2006) Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb(II). J Hazard Mater 136:317–323

    Article  Google Scholar 

  • Ajmal M, Rao RAK, Ahmad R, Khan MA (2006) Adsorption studies on Parthenium hysterophorous weed: removal and recovery of Cd(II) from wastewater. J Hazard Mater 135:242–248

    Article  CAS  PubMed  Google Scholar 

  • Akhtar M, Iqbal S, Kausar A, Bhanger MI, Shaheen MA (2010) An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk. Colloids Surf B 75:149–155

    Article  CAS  Google Scholar 

  • Aksu Z (2001) Equilibrium and kinetic modeling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21:285–294

    Article  CAS  Google Scholar 

  • Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H (2010) Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. J Hazard Mater 184:126–134

    Article  CAS  PubMed  Google Scholar 

  • Baby J, Raj JS, Biby ET, Sankarganesh P, Jeevitha MV, Ajisha SU, Rajan SS (2010) Toxic effect of heavy metals on aquatic environment. Int J Biol Chen Sci 4:939–952

    Google Scholar 

  • Bačkor M, Fahselt D (2008) Lichen photobionts and metal toxicity. Symbiosis 46:1–10

    Google Scholar 

  • Bayramoglu G, Arica MY (2008) Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. J Hazard Mater 156:148

    Article  CAS  PubMed  Google Scholar 

  • Bayramoğlu G, Arica MY (2008) Removal of heavy mercury (II), cadmium (II) and zinc (II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem Eng J 143:133–140

    Article  Google Scholar 

  • Bayramoğlu G, Arica MY (2009) Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies. Bioresour Technol 100:186–193

    Article  PubMed  Google Scholar 

  • Bayramoglu G, YArica MY (2011) Preparation of a composite biosorbent using Scenedesmus quadricauda biomass and alginate/polyvinyl alcohol for removal of Cu(II) and Cd(II) ions: isotherms, kinetics, and thermodynamic studies. Water Air Soil Pollut 221:391–403

    Article  CAS  Google Scholar 

  • Bhat SV, Melo JS, Chaugule BB, D’Souza SF (2008) Adsorption characteristics of uranium (VI) from aqueous medium onto Catenella repens, a red alga. J Hazard Mater 158:628–635

    Article  CAS  PubMed  Google Scholar 

  • Cay S, Uyanık A, Özas A (2004) Single and binary component adsorption of copper (II) and cadmium(II) from aqueous solutions using tea-industry waste. Sep Purif Technol 38:273–280

    Article  CAS  Google Scholar 

  • Chen C, Wang J (2007) Influence of metal ionic characteristics on their biosorption capacity by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 74:911–917

  • Chen Z, Ma W, Han M (2008) Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): application of isotherm and kinetic models. J Hazard Mater 155:327–222

    Article  CAS  PubMed  Google Scholar 

  • Cheung CW, Porter JF, McKay G (2001) Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res 35:605–621

    Article  CAS  PubMed  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Singh DP (2014) An evaluation of phycoremediation potential of cyanobacterium Nostoc muscorum: characterization of heavy metal removal efficiency. J Appl Phycol 26:1331–1342

    Article  CAS  Google Scholar 

  • Edris G, Alhamed Y, Alzahrani A (2014) Biosorption of cadmium and lead from aqueous solutions by Chloralla vulgaris biomass: equilibrium and kinetic study. Arab J Sci Eng 39:87–93

    Article  CAS  Google Scholar 

  • Farombi EO, Adelowo OA, Ajimoko YR (2007) Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinius) from Nigeria Ogun River. Int J Environ Res Public Health 4:158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq U, Khan MA, Athar M, Kozinski JA (2011) Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium (II) ions from aqueous solution. Chem Eng J 171:400–410

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Ghimire KN, Inoue K, Ohto K, Hayashida T (2008) Adsorption study of metal ions onto crosslinked seaweed Laminaria japonica. Bioresour Technol 99:32–37

  • Günay A, Arslankaya E, Tosun I (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J Hazard Mater 146:362–371

    Article  PubMed  Google Scholar 

  • Gupta VK, Rastogi A (2008) Equilibrium and kinetic modeling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153:759–766

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Sharma S (2002) Removal of cadmium and zinc from aqueous solutions using red mud. Environ Sci Technol 36:3612–3617

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Rastogi A, Dwivedi MK, Mohan D (1997) Process development for the removal of zinc and cadmium from wastewater using slag—a blast furnace waste material. Sep Sci Technol 32:2883–2912

    Article  CAS  Google Scholar 

  • Gupta VK, Jain CK, Ali I, Sharma M, Saini VK (2003) Removal of cadmium and nickel from wastewater using baggasse fly ash—a sugar industry waste. Water Res 37:4038–4044

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Nayak A, Agarwal S (2015a) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:1–18

    Article  Google Scholar 

  • Gupta VK, Nayak A, Bhushan B, Agarwal S (2015b) A critical analysis on the efficiency of activated carbons from low-cost precursors for heavy metals remediation. Environ Sci Technol 45:613–668

    Article  Google Scholar 

  • Hameed BH, EI-Khaiary M (2008b) Sorption kinetics and isotherm studies of a cationic dye using agriculture waste: broad bean peels. J Hazard Mater 154:639–648

    Article  CAS  PubMed  Google Scholar 

  • Hameed BH, EI-Khaiary MI (2008a) Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies. J Hazard Mater 154:237–244

    Article  CAS  PubMed  Google Scholar 

  • Herrero R, Cordero B, Lodeiro P, Rey-Castro C, Sastre de Vicente M (2006) Interaction of cadmium (II) and protons with dead biomass of marine algae Fucus sp. Mar Chem 99:106–116

    Article  CAS  Google Scholar 

  • Iqbal M, Saeed A, Zafar SI (2009) FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J Hazard Mater 164:161–171

    Article  CAS  PubMed  Google Scholar 

  • Jena J, Pradhan N, Aishvarya V, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK (2015) Biological sequestration and retention of cadmium as CdS nanoparticles by the microalga Scenedesmus-24. J Appl Phycol 27:2251–2260

    Article  CAS  Google Scholar 

  • Ji L, Xie SL, Feng J, Li YH, Chen L (2012) Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. J Appl Phycol 24:979–983

    Article  CAS  Google Scholar 

  • Kadirvelu K, Namasivayam C (2003) Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Adv Envrion Res 7:471–478

    Article  CAS  Google Scholar 

  • Khattar JIS, Parveen S, Singh Y, Singh DP, Gulati A (2015) Intracellular uptake and reduction of hexavalent chromium by the cyanobacterium Synechocystis sp. PUPCCC 62. J Appl Phycol 27:827–837

    Article  CAS  Google Scholar 

  • Lagoa R, Rodrigues JR (2007) Evaluation of dry protonated calcium alginate beads for biosorption applications and studies of lead uptake. Appl Biochem Biotechnol 143:115–128

    Article  CAS  PubMed  Google Scholar 

  • Liu RX, Tang HX, Lao WX (2002) Advances in biosorption mechanism and equilibrium modeling for heavy metals on biomaterials. Prog Chem 14:87–92

    CAS  Google Scholar 

  • Loukidou MX, Karapantsios TD, Zouboulis AI, Matis KA (2004) Diffusion kinetic study of cadmium(II) biosorption by Aeromonas caviae. J Chem Technol Biotechnol 79:711–719

    Article  CAS  Google Scholar 

  • Lu WB, Shi JJ, Wang CH, Chang JS (2006) Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater 134:80–86

    Article  CAS  PubMed  Google Scholar 

  • Matlock MM, Henke KR, Atwood DA (2002) Effectiveness of commercial reagents for heavy metal removal from water with new insights for future chelate designs. J Hazard Mater 92:129–42

    Article  CAS  PubMed  Google Scholar 

  • Meitei MD, Prasad MNV (2013) Lead (II) and cadmium (II) biosorption on Spirodela polyrhiza (L.) Schleiden biomass. J Environ Chem Eng 1:200–207

    Article  CAS  Google Scholar 

  • Memon JR, Memon SQ, Bhanger MI, Zuhra Memon G, El-Turki A, Allen GC (2008) Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal. Colloids Surf B 66:260–265

    Article  CAS  Google Scholar 

  • Mirghaffari N, Moeini E, Farhadian O (2015) Biosorption of Cd and Pb ions from aqueous solutions by biomass of the green microalga, Scenedesmus quadricauda. J Appl Phycol 27:311–320

    Article  CAS  Google Scholar 

  • Naser HA (2013) Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar Poll Bull 72:6–13

    Article  CAS  Google Scholar 

  • Ozsoy HD, Kumbur H, Saha B, Leeuwen JHV (2008) Use of Rhizopus oligosporus produced from food processing natural water as a biosorbent for Cu (II) ions removal from the aqueous solutions. Bioresour Technol 99:4943–4948

    Article  CAS  PubMed  Google Scholar 

  • Padmini E, Sridhar S (2007) Effect of pH and contact time on the uptake of heavy metals from industrial effluents by Pongamia pinnata Bark. Asian J Microbiol Biotechnol Environ Sci 9:187–190

  • Perales-Vela HV, Gonzáles-Moreno S, Montes-Horcasitas C, Canizares-Villanueva RO (2007) Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere 67:2274–2281

    Article  CAS  PubMed  Google Scholar 

  • Pino GH, Mesquita LMS, Torem ML, Pinto GASP (2006) Biosorption of cadmium by green coconut shell powder. Miner Eng 19:380–387

    Article  CAS  Google Scholar 

  • Qiu H, Lu LV, Pan BC, Zhang QJ, Zhang WM, Zhang QX (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Science A 10(5):716–724

    Article  CAS  Google Scholar 

  • Rai PK (2012) An eco-sustainable green approach for heavy metals management: two case studies of developing industrial region. Environ Monit Assess 184:421–48

    Article  PubMed  Google Scholar 

  • Riaz M, Nadeem R, Hanif MA, Ansari TM, Rehman KU (2009) Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (cotton) waste biomass. J Hazard Mater 161:88–94

    Article  CAS  PubMed  Google Scholar 

  • Saiano F, Ciofalo M, Cacciola SO, Ramirez S (2005) Metal ion adsorption by Phomopsis sp. biomaterial in laboratory experiments and real wastewater treatment. Water Res 39:2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Saikaew W, Kaewsarn P, Saikaew W (2009) Pomelo peel: agricultural waste for biosorption of cadmium ions from aqueous solutions. World Acad Sci Eng Technol 56:287–291

    Google Scholar 

  • Selatnia A, Bakhti MZ, Madani A, Kertous L, Mansouri Y (2004) Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 75:11–24

    Article  CAS  Google Scholar 

  • Sha L, Xueyi G, Ningchuan F, Qinghua T (2009) Adsorption of Cu2+ and Cd2+ from aqueous solution by mercapto-acetic acid modified orange peel. Colloids Surf B 73:10–14

    Article  Google Scholar 

  • Sips R (1948) Combined form of Langmuir and Freundlich equations. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  • Solisio C, Lodi A, Soletto D, Converti A (2008) Cadmium biosorption on Spirulina platensis biomass. Bioresour Technol 99:5933–5937

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bact Rev 35:171–205

  • Suzuki Y, Kametani T, Maruyama T (2005) Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Res 39:1803–1808

    Article  CAS  PubMed  Google Scholar 

  • Tan IAW, Ahmad AL, Hameed BH (2008) Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J Hazard Mater 154:337–346

    Article  CAS  PubMed  Google Scholar 

  • Vaclavikova M, Misaelides P, Gallios G, Jakabsky S, Hredzak S (2005) Removal of cadmium, zinc, copper and lead by red mud, an iron oxides containing hydrometallurgical waste. Stud Surf Sci Catal 155:517–525

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel (II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater B 133:304–308

    Article  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2006) Equilibrium and kinetic modeling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste. Water Res 40:291–302

    Article  CAS  PubMed  Google Scholar 

  • Vinod VTP, Sashidhar RB, Sreedharc B (2009) Interaction of Pb2+and Cd2+ with gum kondagogu (Cochlospermum gossypium): a natural carbohydrate polymer with biosorbent properties. Carbohydr Polym 78:894–901

    Article  CAS  Google Scholar 

  • WHO (2010) Exposure to cadmium: a major public health concern http://www.who.int/ipcs/features/cadmium.pdf?ua=1. Accessed 20 June 2015

  • WHO (2011) Cadmium in drinking-water background document for development of WHO guidelines for drinking-water quality, World Health Organization (WHO/SDE/WSH/03.04/11/Rev/1). http://www.who.int/water_sanitation_health/dwq/chemicals/cadmium.pdf. Accessed 20 June 2015

  • Winter C, Winter M, Pohl P (1994) Cadmium adsorption by non-living biomass of the semi-macroscopic brown alga, Ectocarpus siliculosus, grown in axenic mass culture and localisation of the adsorbed Cd by transmission electron microscopy. J Appl Phycol 6:479–487

    Article  CAS  Google Scholar 

  • Xia J, Li Y, Lu J (2004) Effects of copper and cadmium on growth, photosynthesis, and pigment content in Gracilaria lemaneiformis. Bull Environ Contam Toxicol 73:979–986

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Tong M, Sun X, Li B (2007) Cystine-modified biomass for Cd(II) and Pb(II) biosorption. J Hazard Mater 143:277–284

    Article  CAS  PubMed  Google Scholar 

  • Yu CL, Lu ZP, Ge FZ, Zhao EL (2011) Biosorption of cadmium onto Pseudomonas fluorescens: application of isotherm and kinetic models. Adv Mat Res 171–172:49–52

    Article  Google Scholar 

  • Zhu BY, Zhao ZG (1996) The foundation of interface chemistry. Chemical Industry Press, Beijing

  • Ziagova M, Dimitriadis G, Aslanidou D, Papaioannou X, Tzannetaki EL, Liakopoulou-Kyriakides M (2007) Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour Technol 98:2859–2965

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman AR, Coyne KW, Chorover J (2004) Problem solving in chemical and biochemical engineering with POLYMATH, Excel, and MATLAB. Org Geochem 35:355–375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31000099) and the Fundamental Research Funds of the Northwest A&F University (2014YB038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Yin, W., Chang, Z. et al. Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris . J Appl Phycol 29, 211–221 (2017). https://doi.org/10.1007/s10811-016-0916-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0916-2

Keywords

Navigation