Skip to main content
Log in

A Simulation Model of Fission–Fusion Dynamics and Long-Term Settlement Change

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Archaeological analyses often detect abrupt changes over time in the hierarchy of settlement sizes and the spatial distribution of residential units. These transformations have been explained looking at a variety of possible causes, from climatic changes to the sudden release of slowly cumulating political tensions. While many of these models offer plausible explanations for specific historical contexts, a broad-breadth model is desirable if cross-cultural analysis is sought. This paper tackles this problem by starting from the theoretical proposition that human groups are characterised by a non-linear relationship between size and per-capita fitness. Increasing group size has beneficial effects, but once a certain threshold is exceeded, negative frequency dependence will start to predominate leading to a decline in the per-capita fitness. Such a relationship can potentially have long-term implications in the spatial structure of human settlements if individuals have the possibility to modify their fitness through group fission–fusion dynamics. I will illustrate the equilibrium properties of these dynamics by means of an abstract agent-based simulation and discuss its implication for understanding long-term changes in human settlement pattern. Results suggest that changes in settlement pattern can originate from internal dynamics alone if the system is highly integrated and interconnected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allee, W. C. (1951). The social life of animals. Boston: Beacon Press.

    Google Scholar 

  • Bevan, A. (2011). Computational models for understanding movement and territory. In V. Mayoral Herrera & S. Celestino Pérez (Eds.), Tecnologías de Información Geográfica y Análisis Arqueológico del Territorio (pp. 383–394). Mérida: Anejos de Archivo Español de Arqueología.

    Google Scholar 

  • Bevan, A., & Connolly, J. (2006). Multiscalar approaches to settlement pattern analysis. In G. Lock & B. Molyneaux (Eds.), Confronting scale in archaeology: Issues of theory and practice (pp. 217–234). New York: Springer.

    Google Scholar 

  • Bevan, A., Crema, E., Li, X., & Palmisano, A. (2013). Intensities, interactions and uncertainties: Some new approaches to archaeological distributions. In A. Bevan & M. Lake (Eds.), Computational approaches to archaeological space (pp. 27–52). Walnut Creek: Left Coast Press.

  • Bevan, A., & Wilson, A. (2013). Models of settlement hierarchy based on partial evidence. Journal of Archaeological Science, 40(5), 2415–2427.

    Article  Google Scholar 

  • Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., et al. (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science, 287, 1257–1266.

    Article  Google Scholar 

  • Bonner, J. T. (2004). Perspective: The size-complexity rule. Evolution, 58, 1883–1890.

    Article  Google Scholar 

  • Boone, J. L. (1992). Competition, conflict, and the development of social hierarchies. In E. A. Smith & B. Winterhalder (Eds.), Evolutionary ecology and human behaviour (pp. 301–337). New York: Aldine de Gruyter.

    Google Scholar 

  • Carballo, D. M., & Pluckhahn, T. (2007). Transportation corridors and political evolution in highland Mesoamerica: Settlement analyses incorporating GIS for northern Tlaxcala, Mexico. Journal of Anthropological Archaeology, 26(4), 607–629.

    Article  Google Scholar 

  • Cashdan, E. (1992). Spatial organization and habitat use. In E. A. Smith & B. Winterhalder (Eds.), Evolutionary ecology and human behaviour (pp. 237–266). New York: Aldine de Gruyter.

    Google Scholar 

  • Clark, C. W., & Mangel, M. (1984). Foraging and flocking strategies: Information in an uncertain environment. The American Naturalist, 123(5), 626–641.

    Article  Google Scholar 

  • Clark, C. W., & Mangel, M. (1986). The evolutionary advantages of group foraging. Theoretical Population Biology, 30, 45–75.

    Article  Google Scholar 

  • Crema, E. (2013a). Modelling settlement rank-size fluctuations. In G. Wurzer, K. Kowarik, & H. Reschreiter (Eds.), Agent-based modeling and simulation in archaeology: Springer. In press.

  • Crema, E. R. (2013b). Spatial and temporal models of Jomon settlement. Unpublished PhD Thesis, University College London, London.

  • Crema, E. R. (2013c). Cycles of change in Jomon settlement: A case study from Eastern Tokyo Bay. Antiquity. In press.

  • Crema, E. R., Bevan, A., & Lake, M. (2010). A probabilistic framework for assessing spatio-temporal point patterns in the archaeological record. Journal of Archaeological Science, 37(5), 1118–1130.

    Article  Google Scholar 

  • Dean, J. S., Gumerman, G. J., Epstein, J. M., Axtell, R. L., Swedlund, A. C., Parker, M. T., et al. (2000). Understanding Anasazi culture change through agent base modeling. In T. A. Kohler & G. J. Gumerman (Eds.), Dynamics in human and primate societies: Agent based modeling of social and spatial processes (pp. 179–205). Oxford: Oxford University Press.

    Google Scholar 

  • Dewar, R. E., & McBride, K. A. (1992). Remnant settlement patterns. In J. Rossignol & L. Wandsnider (Eds.), Space, time, and archaeological landscapes (pp. 257–282). New York: Plenum Press.

    Google Scholar 

  • Drennan, R. D., & Peterson, C. E. (2004). Comparing archaeological settlement systems with rank-size graphs: A measure of shape and statistical confidence. Journal of Archaeological Science, 31, 533–549.

    Article  Google Scholar 

  • Dunbar, R. I. M. (1993). Coevolution of neocortical size, group size and language in humans. Behavioral and Brain Sciences, 16, 681–735.

    Article  Google Scholar 

  • Falconer, S. E., & Savage, S. H. (1995). Heartlands and hinterlands: Alternative trajectories of early urbanization in Mesopotamia and the Southern Levant. American Antiquity, 60, 37–58.

    Article  Google Scholar 

  • Fletcher, R. (1995). The limits of settlement growth: A theorethical outline. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fortin, M.-J., & Dale, M. (2005). Spatial analysis: A guide for ecologists. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fretwell, S. D., & Lucas, H. J. J. (1970). On territorial behaviour and other factors influencing habitat distribution in birds. Acta Biotheoretica, 19, 16–36.

    Google Scholar 

  • Giraldeau, L.-A., & Caraco, T. (1993). Genetic relatedness and group size in an aggregation economy. Evolutionary Ecology, 7, 429–438.

    Article  Google Scholar 

  • Gould, R. A., & Yellen, J. E. (1987). Man the hunted: Determinants of household spacing in desert and tropical foraging societies. Journal of Anthropological Archaeology, 6, 77–103.

    Article  Google Scholar 

  • Greene, C. M., & Stamps, J. A. (2001). Habitat selection at low population densities. Ecology, 82, 2091–2100.

    Article  Google Scholar 

  • Griffin, A. F. (2011). Emergence of fusion/fission cycling and self-organized criticality from a simulation model of early complex polities. Journal of Archaeological Science, 38, 873–883.

    Article  Google Scholar 

  • Halstead, P., & O'Shea, J. (1989). Introduction: Cultural responses to risk and uncertainty. In P. Halstead & J. O'Shea (Eds.), Bad year economics: Cultural responses to risk and uncertainty (pp. 1–7). Cambrdige: Cambridge University Press.

    Chapter  Google Scholar 

  • Hamilton, M. J., Milne, B. T., Walker, R. S., & Brown, J. H. (2007). Nonlinear scaling of space use in human hunter–gatherers. Proceedings of the National Academy of Sciences of the United States of America, 104(11), 4765–4769.

    Article  Google Scholar 

  • Hardin, G. (1968). The tragedy of commons. Science, 162, 1243–1248.

    Article  Google Scholar 

  • Hawkes, K. (1992). Sharing and collective action. In E. A. Smith & B. Winterhalder (Eds.), Evolutionary ecology and human behaviour (pp. 269–300). New York: Aldine de Gruyter.

    Google Scholar 

  • Henrich, J. (2001). Cultural transmission and the diffusion of innovations: Adoption dynamics indicate that biased cultural transmission is the predominate force in behavioral change. American Anthropologist, 103(4), 992–1013.

    Article  Google Scholar 

  • Henrich, J. (2004). Demography and cultural evolution: How adaptive cultural processes can produce maladaptive losses: The Tasmanian case. American Anitquity, 69(2), 197–214.

    Article  Google Scholar 

  • Hill, K., & Hawkes, K. (1987). Neotropical hunting among the Aché of Eastern Paraguay. In R. B. Hames & W. T. Vickers (Eds.), Adaptive responses of Native Amazonians (pp. 139–188). New York: Academic Press.

    Google Scholar 

  • Horn, H. S. (1968). The adaptive significance of colonial nesting in the Brewer's Blackbird (Euphagus cyanocephalus). Ecology, 49(4), 682–694.

    Article  Google Scholar 

  • Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns (statistics in practice). Chirchester: Wiley.

    Google Scholar 

  • Jeanson, R., Fewell, J. H., Gorelick, R., & Bertram, S. M. (2007). Emergence of increased division of labor as a function of group size. Behavioral Ecology and Sociobiology, 62, 289–298.

    Article  Google Scholar 

  • Jochim, M. A. (1976). Hunter–gatherer subsistence and settlement: A predictive model. London: Academic Press.

    Google Scholar 

  • Johnson, G. A. (1980). Rank-size convexity and system integration: A view from archaeology. Economic Geography, 56, 234–247.

    Article  Google Scholar 

  • Kennedy, J. (1998). Methods of agreement: Inference among the EleMentals. In Intelligent control (ISIC), 1998. Held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), Intelligent Systems and Semiotics (ISAS), Proceedings, Piscataway, NJ, (pp. 883–887): IEEE Service Center

  • Kennett, D., Anderson, A., & Winterhalder, B. (2006). The ideal free distribution, food production, and the colonization of oceania. In: D. J. Kennett & B. Winterhalder (Eds.), Behavioral Ecology and the Transition to Agriculture (pp. 265–288). Berkeley: University of California Press.

  • Kohler, T. A., & Varien, M. D. (2010). A scale model of seven hundred years of farming settlements in Southwestern Colorado. In M. S. Bandy & K. R. Fox (Eds.), Becoming villagers: Comparing early village societies (pp. 37–61). Tucson: University of Arizona Press.

    Google Scholar 

  • Lake, M., & Crema, E. R. (2012). The cultural evolution of adaptive-trait diversity when resources are uncertain and finite. Advances in Complex Systems, 19, 1150013

    Google Scholar 

  • McGlade, J. (1995). Archaeology and the ecodynamics of human-modified landscapes. Antiquity, 69, 113–132.

    Google Scholar 

  • McRae, B. H. (2006). Isolation by resistence. Evolution, 60(8), 1551–1561.

    Article  Google Scholar 

  • McRae, B. H., Dickson, B. G., Keitt, T. H., & Shah, V. B. (2008). Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89, 2712–2724.

    Article  Google Scholar 

  • Mithen, S. (1990). Thoughtful foragers: A study of prehistoric decision making. New York: Cambridge University Press.

    Book  Google Scholar 

  • Møller, A. P. (1995). Developmental stability and ideal despotic distribution of blackbirds in a patchy environment. Oikos, 72, 228–234.

    Google Scholar 

  • Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. New Jersey: Princeton University Press.

    Google Scholar 

  • Renfrew, C., & Poston, T. (1979). Discontinuities in the endogenous change of settlement pattern. In C. Renfrew & K. L. Cooke (Eds.), Transformations: Mathemathical approaches to culture change (pp. 437–461). New York: Academic Press.

    Google Scholar 

  • Roberts, B. K. (1996). Landscapes of settlement: Prehistory to the present. London: Routeledge.

    Google Scholar 

  • Savage, S. H. (1997). Assessing departures from log-normality in the rank-size rule. Journal of Archaeological Science, 24, 233–244.

    Article  Google Scholar 

  • Scheffer, M. (2009). Critical transitions in nature and society. New Jersey: Princeton University Press.

    Google Scholar 

  • Shennan, S. (2001). Demography and cultural innovations: A model and its implications for the emergence of modern human culture. Cambridge Archaeological Journal, 11(1), 5–16.

    Article  Google Scholar 

  • Shennan, S. J., & Bentley, A. M. (2008). Interaction, and demography among the earliest farmers of Central Europe. In: M. J. O’Brien (Ed.), Cultural transmission and archaeology: Issues and case studies (pp. 164–177) Washington DC: SAA Press.

  • Sibly, R. M. (1983). Optimal group size is unstable. Animal Behaviour, 31(3), 947–948.

    Article  Google Scholar 

  • Smith, E. A., & Choi, J.-K. (2007). The emergence of inequality in small-scale societies: Simple scenarios and agent-based simulations. In T. Kohler & S. Leeuw (Eds.), The model-based achaeology of socionatural systems (pp. 105–119). Santa Fe: SAR Press.

    Google Scholar 

  • Sutherland, W. J. (1983). Aggregation and the "ideal free" distribution. Journal of Animal Ecology, 52, 821–828.

    Article  Google Scholar 

  • Vaesen, K. (2012). Cumulative cultural evolution and demography. PloS ONE, 7(7), e40989.

    Article  Google Scholar 

  • Winterhalder, B., Kennett, D. J., Grote, M. N., & Bartruff, J. (2010). Ideal free settlement of California’s Northern Channel Islands. Journal of Anthropological Archaeology, 29, 469–490.

    Google Scholar 

  • Wren, C. D., Zue, J. X., Costopoulos, A., & Burke, A. (under review). The role of spatial foresight on models of hominin dispersal. Journal of Human Evolution.

  • Xue, J. Z., Costopoulos, A., & Guichard, F. (2011). Choosing fitness-enhancing innovations can be detrimental under fluctuating environments. PloS ONE, 6, e26770.

    Article  Google Scholar 

  • Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge: Harvard University Press.

    Google Scholar 

Download references

Acknowledgments

This paper benefited from comments and feedback from Andrew Bevan and Mark Lake, to whom I am extremely grateful. I would also like to thank Rick Schulting and James Steele for insightful comments on the agent-based model, Marco Madella and Bernardo Rondelli for inviting me to contribute to this special issue and the UK Art and Humanities Research Council funded UCL Centre for the Evolution of Cultural Diversity for granting me access to the UCL Legion High Performance Computing Facility. Finally, I would like to thank the three anonymous reviewers who offered me detailed feedbacks, comments and suggestions for improving this work. A UCL Graduate School Research Scholarship funded the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico R. Crema.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crema, E.R. A Simulation Model of Fission–Fusion Dynamics and Long-Term Settlement Change. J Archaeol Method Theory 21, 385–404 (2014). https://doi.org/10.1007/s10816-013-9185-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-013-9185-4

Keywords

Navigation