Skip to main content
Log in

On the formation of cementitious C–S–H nanoparticles

  • Original Paper
  • Published:
Journal of Computer-Aided Materials Design

Abstract

This work explores from a theoretical viewpoint the underlying growth mechanisms which govern the formation of the most important hydration product present in cementitious environments, the so called C–S–H (calcium–silicate–hydrate) gel. Aiming at identifying the basic building blocks which make up the cementitious C–S–H gel, we have performed ab-initio calculations at the Hartree Fock (HF) level. Two different growth mechanisms have been identified depending on the amount of Si and Ca ions, which naturally lead to the appearance of tobermorite-like and jennite-like nano-crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor H.F. (1986) Proposed structure for calcium silicate hydrate gel. J. Am. Ceram. Soc. 69(6): 464–467

    Article  CAS  Google Scholar 

  2. Ramachandran V.S., Beaudoin J.J. (2001) Handbook of Analytical Techniques in Concrete. William Andrew Publishing, New York

    Google Scholar 

  3. Richardson I.G., Groves G.W. (1992) Cement Concrete Res. 22, 1001–1010

    Article  CAS  Google Scholar 

  4. Cong X., Kirkpatrick R.J. (1996) Adv. Cem. Based Mater. 3, 144–146

    Article  CAS  Google Scholar 

  5. Nonat A., Lecoq X. (1998) The structure, stoichiometry and properties of C–S–H prepared by C3S hydration under controlled conditions. Nuclear Magnetic resonance Spectroscopy of Cement-Based Materials. Springer, Berlin, pp. 197–207

    Google Scholar 

  6. Chen J.J., Thomas J.T, Taylor H.F.W., Jennings H.M. (2004) Cement Concrete Res. 34, 1499–1519

    Article  CAS  Google Scholar 

  7. Jönsson B., Nonat A., Labbez C., Cabane B., Wennerström H. (2005). Langmuir 21, 9211–9221

    Article  Google Scholar 

  8. Pellenq R.J.-M., Caillol J.M., Delville A. (1997) J. Phys. Chem. B 101, 8584–8584

    Article  CAS  Google Scholar 

  9. Delville A., Pellenq R.J.-M. (2000) Mol. Simulat. 24, 1–24

    Article  CAS  Google Scholar 

  10. Derjaguin, B., Landau, L.D. Acta Physicochim. URSS 14, 635 (1941); Verwey, E.J.W., Overbeek, J.T.G.: Theory of the Stability of Lyophobic Colloids. Elsevier, New York (1958)

  11. Gmira A., Zabat M., Pellenq R.J.-M., Van Damme H. (2004) Mat. struct./Concrete Sci. Eng. 37, 3–14

    CAS  Google Scholar 

  12. Faucon P., et al. (1999) J. Phys. Chem. B 103, 7796–7802

    Article  CAS  Google Scholar 

  13. Kalinitchev A., Kirkpatrick R.J. (2002) Chem. Mater. 14, 3539–3549

    Article  Google Scholar 

  14. Merlino S., Bonaccorsi E., Armbruster T. (2001) Eur. J. Mineral. 13, 577–590

    Article  CAS  Google Scholar 

  15. Bonaccorsi E., x Merlino, E. J. Am. Ceram. Soc. 88(3), 505–512 (2005)

    Google Scholar 

  16. Bonaccorsi E., Merlino S., Taylor H.F.W. (2004) Cement Concrete Res. 34, 1481–1488

    Article  CAS  Google Scholar 

  17. Brough A.R., Dobson C.M., Richardson I.G., Groves G.W. (1994) J. Mat. Sci. 29, 3926–3940

    Article  CAS  Google Scholar 

  18. Richardson I.G. (2004) Cement Concrete Res. 34, 1733–1777

    Article  CAS  Google Scholar 

  19. Jennings H.M. (2000) Cement Concrete Res. 30, 101–116

    Article  CAS  Google Scholar 

  20. GAMESS – General Atomic and Molecular Electronic Structure System. Schmidt, M.W, Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su., Windus, T.L., Dupuis, M., Montgomery, J.A. J. Comput. Chem. 14, 1347–1363 (1993)

    Google Scholar 

  21. Gaussian 03, Revision B.04, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, Jr., T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H.M.X., Hratchian, E.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A., Gaussian, Inc., Pittsburgh PA (2003)

  22. Breneman C.M., Wiberg K.B. (1990) J. Comput. Chem. 11, 361–377

    Article  CAS  Google Scholar 

  23. Parr R.G., Yang W. (1964). J. Am. Chem. Soc. 106: 4049

    Article  Google Scholar 

  24. Mendez F., Gazquez J.L. (1994) J. Am. Chem. Soc. 116: 9298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Dolado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzano, H., Ayuela, A. & Dolado, J.S. On the formation of cementitious C–S–H nanoparticles. J Computer-Aided Mater Des 14, 45–51 (2007). https://doi.org/10.1007/s10820-006-9030-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9030-0

Keywords

Navigation