Skip to main content
Log in

Fracture in three-dimensional random fuse model: recent advances through high-performance computing

  • Published:
Journal of Computer-Aided Materials Design

Abstract

The paper presents the state-of-the-art algorithmic developments for simulating the fracture of disordered quasi-brittle materials using discrete lattice systems. Large scale simulations are often required to obtain accurate scaling laws; however, due to computational complexity, the simulations using the traditional algorithms were limited to small system sizes. In our earlier work, we have developed two algorithms: a multiple sparse Cholesky downdating scheme for simulating 2D random fuse model systems, and a block-circulant preconditioner for simulating 3D random fuse model systems. Using these algorithms, we were able to simulate fracture of largest ever lattice system sizes (L = 1024 in 2D, and L = 64 in 3D) with extensive statistical sampling. Our recent massively parallel simulations on 1024 processors of Cray-XT3 and IBM Blue-Gene/L have further enabled us to explore fracture of 3D lattice systems of size L =  128, which is a significant computational achievement. Based on these large-scale simulations, we analyze the scaling of crack surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herrmann, H.J., Roux, S. (eds.): Statistical Models for the Fracture of Disordered Media. North-Holland, Amsterdam, (1990); Hansen, A., Roux, S.: Statistical toolbox for damage and fracture. In: Krajcinovic, D., van Mier, J.G.M. (eds.) Book Damage and Fracture of Disordered Materials, pp. 17–101. Springer Verlag, New York (2000); Alava, M.J., Nukala, P.K.V.V., Zapperi, S.: Statistical models of fracture. Adv. Phys. 55, 349–476 (2006)

  2. Mandelbrot B.B., Passoja D.E. and Paullay A.J. (1984). Fractal character of fracture surfaces of metals. Nature (London) 308: 721–722

    Article  CAS  Google Scholar 

  3. For a review see Bouchaud, E.: Scaling properties of cracks. J. Phys. Condens. Matter 9, 4319–4344 (1997); Bouchaud, E., The morphology of fracture surfaces, a tool to understand crack propagation in complex materials. Surf. Sci. Review & Lett. 10:794–814(2003)

  4. Ponson, L., Bonamy, D., Bouchaud, E.: Two-dimensional scaling properties of experimental fracture surfaces Phys. Rev. Lett. 96, 035506(4pages) (2006)

  5. Boffa J.M., Allain C. and Hulin J. (1998). Experimental analysis of fracture rugosity in granular and compact rocks. Eur. Phys. J. A 2: 281–289

    Google Scholar 

  6. Bonamy, D., Ponson, L., Prades, S., Bouchaud, E., Guillot, C.: Scaling exponents for fracture surfaces in homogeneous glass and glassy ceramics Phys. Rev. Lett. 97 135504 (4pages) (2006)

  7. López J.M., Rodríguez M.A. and Cuerno R. (1997). Superroughening versus intrinsic anomalous scaling of surfaces. Phys. Rev. E 56: 3993–3998

    Article  Google Scholar 

  8. de Arcangelis, L., Redner, S., Herrmann, H.J.: A random fuse model for breaking processes. J. Phys. (Paris) Lett. 46, 585–590 (1985); Sahimi, M., Goddard, J.D.: Elastic percolation models for cohesive mechanical failure in heterogeneous systems. Phys. Rev. B 33, 7848–7851 (1986)

    Google Scholar 

  9. Batrouni, G.G., Hansen, A.: Fracture in three-dimensional fuse networks. Phys. Rev. Lett. 80, 325–328 (1998); Hansen, A., Schmittbuhl, J.: Origin of the universal roughness exponent of brittle fracture surfaces: stress-weighted percolation in the damage zone. Phys. Rev. Lett. 90, 45504(4pages) (2003); Ramstad, T., Bakke, J.O.H., Bjelland, J., Stranden, T., Hansen A.: Correlation length exponent in the three-dimensional fuse network. Phys. Rev. E 70, 036123 (4pages) (2004)

    Google Scholar 

  10. Räisänen V.I., Alava M.J. and Nieminen R.M. (1998). Fracture of three-dimensional fuse networks with quenched disorder. Phys. Rev. B 58: 14288–14295

    Article  Google Scholar 

  11. Räisänen V.I., Seppala E.T., Alava M.J. and Duxbury P.M. (1998). Quasistatic cracks and minimal energy surfaces. Phys. Rev. Lett. 80: 329–332

    Article  Google Scholar 

  12. Parisi A., Caldarelli G. and Pietronero L. (2000). Roughness of fracture surfaces. Europhys. Lett. 52: 304–310

    Article  CAS  Google Scholar 

  13. Barrett R. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. 2nd edn. SIAM, Philadelphia

    Google Scholar 

  14. Briggs W.L., Van Emden H. and McCormick S.F. (2000). A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia

    Google Scholar 

  15. Batrouni, G.G., Hansen, A., Nelkin, M.: Fourier acceleration of relaxation processes in disordered systems, Phys. Rev. Lett. 57, 1336–1339 (1986); Batrouni, G.G., Hansen, A.: Fourier acceleration of iterative processes in disordered systems, J. Stat. Phys. 52, 747–773 (1988)

    Google Scholar 

  16. O’Shaughnessy, B., Procaccia, I.: Analytical solution for diffusion on fractal objects. Phys. Rev. Lett. 54, 455–458 (1985); O’Shaughnessy, B., Procaccia, I.: Diffusion on fractals. Phys. Rev. A 32, 3073–3083 (1985)

    Google Scholar 

  17. Nukala, P.K.V.V., Simunovic, S.: An efficient algorithm for simulating fracture using large fuse networks. J. Phys. A: Math. Gen.36, 11403–11412 (2003); Nukala, P.K.V.V., Simunovic, S., Guddati, M.N.: An efficient algorithm for modelling progressive damage accumulation in disordered materials. Int. J. Numer. Meth. Eng. 62, 1982–2008 (2005)

    Google Scholar 

  18. Davis, T.A., Hager, W.W.: Modifying a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 20(3), 606–627 (1999); Davis, T.A., Hager, W.W.: Multiple-rank modifications of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 22(4), 997–1013 (2001)

    Google Scholar 

  19. Nukala P.K.V.V. and Simunovic S. (2004). An efficient block-circulant preconditioner for simulating fracture using large fuse networks. J. Phys. A: Math. Gen. 37: 2093–2103

    Article  Google Scholar 

  20. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page, http://www.mcs.anl.gov/petsc (2001); Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Users Manual, ANL- 95/11 - Revision 2.1.5. Argonne National Laboratory, Argonne, IL (2004); Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient Management of Parallelism in Object Oriented Numerical Software Libraries, In Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Book: Modern Software Tools in Scientific Computing, pp. 163–202.

  21. Parks, M.L., de Sturler, E., Mackey, G., Johnson, D.D., Maiti, S.: (2006) Recycling Krylov subspaces for sequence of linear systems. SIAM J. Sci. Comput. 28(5),1651–1674

    Google Scholar 

  22. Schmittbuhl J., Vilotte J.P. and Roux S. (1995). Reliability of self-affine measurements. Phys. Rev. E 51: 131–147

    Article  CAS  Google Scholar 

  23. Zapperi, S., Nukala, P.K.V.V., Simunovic, S.: Crack roughness and avalanche precursors in the random fuse model Phys. Rev. E 71 026106 (10pages) (2005)

  24. López J.M. and Schmittbuhl J. (1998). Anomalous scaling of fracture surfaces. Phys. Rev. E 57: 6405–6408

    Article  Google Scholar 

  25. Morel S., Schmittbuhl J., López J.M. and Valentin G. (1998). Anomalous roughening of wood fractured surfaces. Phys. Rev. E 58: 6999–7005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phani K. V. V. Nukala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nukala, P.K.V.V., Šimunović, S., Zapperi, S. et al. Fracture in three-dimensional random fuse model: recent advances through high-performance computing. J Computer-Aided Mater Des 14 (Suppl 1), 25–35 (2007). https://doi.org/10.1007/s10820-007-9080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-007-9080-y

Keywords

Navigation