Skip to main content
Log in

Thermoelectric properties of silicon nanostructures

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Semiconductor nanostructures are promising candidates for efficient thermoelectric energy conversion, with applications in solid-state refrigeration and power generation. The design of efficient semiconductor thermocouples requires a thorough understanding of both charge and heat transport; therefore, thermoelectricity in silicon-based nanostructures requires that both electronic and thermal transport be treated on an equal footing. In this paper, we present semiclassical simulation of carrier and phonon transport in ultrathin silicon nanomembranes and gated nanoribbons. We show that the thermoelectric response of Si-membrane-based nanostructures can be improved by employing the anisotropy of the lattice thermal conductivity, revealed in ultrathin Si due to boundary scattering, or by using a gate to provide additional carrier confinement and enhance the thermoelectric power factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Majumdar, A.: Thermoelectric devices: helping chips to keep their cool. Nat. Nano 4, 214–215 (2009)

    Article  Google Scholar 

  2. Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nano 4, 235–238 (2009)

    Article  Google Scholar 

  3. Hochbaum, A., Chen, R., Delgado, R., Liang, W., Garnett, E., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)

    Article  Google Scholar 

  4. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J., Goddard, W.A. III, Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008)

    Article  Google Scholar 

  5. Huang, M., Ritz, C.S., Novakovic, B., Yu, D., Zhang, Y., Flack, F., Savage, D.E., Evans, P.G., Knezevic, I., Liu, F., Lagally, M.G.: Mechano-electronic superlattices in silicon nanoribbons. ACS Nano 3, 721–727 (2009)

    Article  Google Scholar 

  6. DiSalvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703–706 (1999)

    Article  Google Scholar 

  7. Slack, G.A.: CRC Handbook of Thermoelectrics, pp. 407–440. CRC Press, Boca Raton (1995)

    Google Scholar 

  8. Chen, R., Hochbaum, A.I., Murphy, P., Moore, J., Yang, P., Majumdar, A.: Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008)

    Article  Google Scholar 

  9. Markussen, T., Jauho, A.-P., Brandbyge, M.: Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics. Phys. Rev. Lett. 103, 055502 (2009)

    Article  Google Scholar 

  10. Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001)

    Article  Google Scholar 

  11. Ryu, H.J., Aksamija, Z., Paskiewicz, D.M., Scott, S.A., Lagally, M.G., Knezevic, I., Eriksson, M.A.: Quantitative determination of contributions to the thermoelectric power factor in Si nanostructures (2010, submitted)

  12. Aksamija, Z., Knezevic, I.: Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82, 045319 (2010)

    Article  Google Scholar 

  13. Weber, W.: New bond-charge model for the lattice dynamics of diamond-type semiconductors. Phys. Rev. Lett. 33(6), 371–373 (1974)

    Article  Google Scholar 

  14. Weber, W.: Adiabatic bond charge model for the phonons, diamond, Si, Ge, and α-Sn Phys. Rev. B 15, 4789–4803 (1977)

    Article  Google Scholar 

  15. Strauch, D., Dorner, B.: Phonon dispersion GaAs. J. Phys. Chem. 2, 1457–1474 (1990)

    Google Scholar 

  16. Prasher, R., Tong, T., Majumdar, A.: Approximate analytical models for phonon specific heat and ballistic thermal conductance of nanowires. Nano Lett. 8, 99–103 (2008)

    Article  Google Scholar 

  17. Dames, C., Chen, G.: Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys. 95(2), 682–693 (2004)

    Article  Google Scholar 

  18. Mingo, N.: Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68(11), 113308 (2003)

    Article  Google Scholar 

  19. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Brooks/Cole, Belmont (1976)

    Google Scholar 

  20. Gilat, G., Raubenheimer, L.J.: Accurate numerical method for calculating frequency-distribution functions in solids. Phys. Rev. 144(2), 390–395 (1966)

    Article  Google Scholar 

  21. Ziman, J.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press, Oxford (1960)

    MATH  Google Scholar 

  22. Ward, A., Broido, D.A.: Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81(8), 085205 (2010)

    Article  Google Scholar 

  23. Morelli, D.T., Heremans, J.P., Slack, G.A.: Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III–V semiconductors. Phys. Rev. B 66(19), 195304 (2002)

    Article  Google Scholar 

  24. Tamura, S.-I.: Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27(2), 858–866 (1983)

    Article  Google Scholar 

  25. Broido, D.A., Ward, A., Mingo, N.: Lattice thermal conductivity of silicon from empirical interatomic potentials. Phys. Rev. B 72, 014308 (2005)

    Article  Google Scholar 

  26. Liu, W., Asheghi, M.: Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat Transf. 128(1), 75–83 (2006)

    Article  Google Scholar 

  27. Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437 (1982)

    Article  Google Scholar 

  28. Knezevic, I., Ramayya, E.B., Vasileska, D., Goodnick, S.M.: Diffusive transport in quasi-2d and quasi-1d electron systems. J. Comput. Theor. Nanosci. 6, 1725–1753 (2009)

    Article  Google Scholar 

  29. Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band kp calculation of the hole mobility in silicon inversion layers: dependence on surface orientation, strain, and silicon thickness. J. Appl. Phys. 94(2), 1079–1095 (2003)

    Article  Google Scholar 

  30. Tsaousidou, M., Butcher, P.N., Triberis, G.P.: Fundamental relationship between the Herring and Cantrell-Butcher formulas for the phonon-drag thermopower of two-dimensional electron and hole gases. Phys. Rev. B 64(16), 165304 (2001)

    Article  Google Scholar 

  31. Donetti, L., Gamiz, F., Rodriguez, N., Godoy, A.: Hole mobility in ultrathin double-gate SOI devices: the effect of acoustic phonon confinement. IEEE Electron. Dev. Lett. 30(12), 1338–1340 (2009)

    Article  Google Scholar 

  32. Neophytou, N., Kim, S.G., Klimeck, G., Kosina, H.: On the bandstructure velocity and ballistic current of ultra-narrow silicon nanowire transistors as a function of cross section size, orientation, and bias. J. Appl. Phys. 107(11), 113701 (2010)

    Article  Google Scholar 

  33. Vo, T.T., Williamson, A.J., Lordi, V., Galli, G.: Atomistic design of thermoelectric properties of silicon nanowires. Nano Lett. 8(4), 1111–1114 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Aksamija.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksamija, Z., Knezevic, I. Thermoelectric properties of silicon nanostructures. J Comput Electron 9, 173–179 (2010). https://doi.org/10.1007/s10825-010-0339-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-010-0339-2

Keywords

Navigation