Skip to main content
Erschienen in: Journal of Computational Electronics 3/2016

20.04.2016

Empirical transport model of strained CNT transistors used for sensor applications

verfasst von: Christian Wagner, Jörg Schuster, Thomas Gessner

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present an empirical model for the near-ballistic transport in carbon nanotube (CNT) transistors used as strain sensors. This model describes the intrinsic effect of strain on the transport in CNTs by taking into account phonon scattering and thermally activated charge carriers. As this model relies on a semiempirical description of the electronic bands, different levels of electronic structure calculations can be used as input. The results show that the electronic structure of strained single-walled CNTs with a radius larger than 0.7 nm can be described by a fully analytical model in the sensing regime. For CNTs with smaller diameter, parameterized data from electronic structure calculations can be used for the model. Depending on the type of CNTs, the conductance can vary by several orders of magnitude when strain is applied, which is consistent with the current literature. Further, we demonstrate the tuning of the sensor by an external gate which allows shifting the signal amplitude. These parameters have to be balanced to get good sensing properties. The impact of (semi-)metallic CNTs on the sensor performance is evaluated, too. Metallic CNTs have to be avoided in order to construct working sensing devices. Due to its basically analytical nature, the transport model can be evolved towards a compact model for circuit simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The parameters for density functional calculations are identical to those published in [4].
 
2
This fact seems unlikely for that symmetry, but already the Tight binding zone folding approach predicts a band minimum for chiral CNTs, which is not at the Gamma point.
 
3
Depending on the CNT length, the transport regime alters from the ballistic to the diffusive regime. These cases are all covered by this model. In the limiting case of short CNTs, the transport is ballistic. Thus, the transport regime can be called near-ballistic.
 
4
The scaling relation can be obtained by Fermi’s golden rule (transmission rate scales with the final states’ DOS) and the scaling of the density of states, which scales with \(\tau \sim 1/v\).
 
5
The off-current is underestimated as band-to-band-tunneling is not included in our model. The argumentation is not affected by this.
 
6
Depending on the experiment, one uses approximately 100–1000 CNTs instead of a single one.
 
7
This limit is equivalent to the reliability limit of a compact model without BTBT in [13, p. 47] for the (13,0)-CNT. The (13,0)-CNT has a similar band gap like the (8,4)-CNT.
 
Literatur
3.
Zurück zum Zitat Leeuw, T.K., Tsyboulski, D.A., Nikolaev, P.N., Bachilo, S.M., Arepalli, S., Weisman, R.B.: Strain measurements on individual single-walled carbon nanotubes in a polymer host: structure-dependent spectral shifts and load transfer. Nano Lett. 8, 826–831 (2008). doi:10.1021/nl072861c CrossRef Leeuw, T.K., Tsyboulski, D.A., Nikolaev, P.N., Bachilo, S.M., Arepalli, S., Weisman, R.B.: Strain measurements on individual single-walled carbon nanotubes in a polymer host: structure-dependent spectral shifts and load transfer. Nano Lett. 8, 826–831 (2008). doi:10.​1021/​nl072861c CrossRef
4.
Zurück zum Zitat Wagner, C., Schuster, J., Gessner, T.: DFT investigations of the piezoresistive effect of carbon nanotubes for sensor application. Phys. Stat. Sol. B 249, 2450–2453 (2012). doi:10.1002/pssb.201200113 CrossRef Wagner, C., Schuster, J., Gessner, T.: DFT investigations of the piezoresistive effect of carbon nanotubes for sensor application. Phys. Stat. Sol. B 249, 2450–2453 (2012). doi:10.​1002/​pssb.​201200113 CrossRef
6.
Zurück zum Zitat Stampfer, C., Helbling, T., Jungen, A., Hierold, C.: Piezoresistance of single-walled carbon nanotubes, In: Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International. doi:10.1109/SENSOR.2007.4300445, pp. 1565–1568 (2007) Stampfer, C., Helbling, T., Jungen, A., Hierold, C.: Piezoresistance of single-walled carbon nanotubes, In: Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International. doi:10.​1109/​SENSOR.​2007.​4300445, pp. 1565–1568 (2007)
7.
Zurück zum Zitat Wu, Y., Huang, M., Wang, F., Huang, X.M.H., Rosenblatt, S., Huang, L., Yan, H., O’Brien, S.P., Hone, J., Heinz, T.F.: Determination of the young’s modulus of structurally defined carbon nanotubes. Nano Lett. 8, 4158–4161 (2008). doi:10.1021/nl801563q CrossRef Wu, Y., Huang, M., Wang, F., Huang, X.M.H., Rosenblatt, S., Huang, L., Yan, H., O’Brien, S.P., Hone, J., Heinz, T.F.: Determination of the young’s modulus of structurally defined carbon nanotubes. Nano Lett. 8, 4158–4161 (2008). doi:10.​1021/​nl801563q CrossRef
8.
Zurück zum Zitat Jeong, B.-W., Sinnott, S.B.: Atomic-scale simulations of the mechanical behavior of carbon nanotube systems. In: Dumitrica, T. (ed.) Trends in Computational Nanomechanics, Vol. 9 of Challenges and Advances in Computational Chemistry and Physics, pp. 255–295. Springer, The Netherlands (2010). doi:10.1007/978-1-4020-9785-0_10 Jeong, B.-W., Sinnott, S.B.: Atomic-scale simulations of the mechanical behavior of carbon nanotube systems. In: Dumitrica, T. (ed.) Trends in Computational Nanomechanics, Vol. 9 of Challenges and Advances in Computational Chemistry and Physics, pp. 255–295. Springer, The Netherlands (2010). doi:10.​1007/​978-1-4020-9785-0_​10
10.
Zurück zum Zitat Wagner, C., Hartmann, S., Wunderle, B., Schuster, J., Schulz, S., Gessner, T.: Nanomechanics of CNTs for sensor application. In: 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD). doi:10.1109/SSD.2012.6198045, pp. 1–5 (2012) Wagner, C., Hartmann, S., Wunderle, B., Schuster, J., Schulz, S., Gessner, T.: Nanomechanics of CNTs for sensor application. In: 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD). doi:10.​1109/​SSD.​2012.​6198045, pp. 1–5 (2012)
12.
Zurück zum Zitat Hermann, S., Fiedler, H., Haibo, Y., Loschek, S., Bonitz, J., Schulz, S., Gessner, T.: Wafer level approaches for the integration of carbon nanotubes in electronic and sensor applications. In: 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD). doi:10.1109/SSD.2012.6198090, pp. 1–5 (2012) Hermann, S., Fiedler, H., Haibo, Y., Loschek, S., Bonitz, J., Schulz, S., Gessner, T.: Wafer level approaches for the integration of carbon nanotubes in electronic and sensor applications. In: 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD). doi:10.​1109/​SSD.​2012.​6198090, pp. 1–5 (2012)
13.
Zurück zum Zitat Maneux, C., Fregonese, S., Zimmer, T., Retailleau, S., Nguyen, H.N., Querlioz, D., Bournel, A., Dollfus, P., Triozon, F., Niquet, Y.M., Roche, S.: Multiscale simulation of carbon nanotube transistors. Solid-State Electron. 89, 26–67 (2013). doi:10.1016/j.sse.2013.06.013 CrossRef Maneux, C., Fregonese, S., Zimmer, T., Retailleau, S., Nguyen, H.N., Querlioz, D., Bournel, A., Dollfus, P., Triozon, F., Niquet, Y.M., Roche, S.: Multiscale simulation of carbon nanotube transistors. Solid-State Electron. 89, 26–67 (2013). doi:10.​1016/​j.​sse.​2013.​06.​013 CrossRef
14.
Zurück zum Zitat Schröter, M., Claus, M., Sakalas, P., Haferlach, M., Wang, D.: Carbon nanotube FET technology for radio-frequency electronics: state-of-the-art overview. IEEE J. Electron Devices Soc. 1, 9–20 (2013). doi:10.1109/JEDS.2013.2244641 CrossRef Schröter, M., Claus, M., Sakalas, P., Haferlach, M., Wang, D.: Carbon nanotube FET technology for radio-frequency electronics: state-of-the-art overview. IEEE J. Electron Devices Soc. 1, 9–20 (2013). doi:10.​1109/​JEDS.​2013.​2244641 CrossRef
15.
Zurück zum Zitat Luo, J., Wei, L., Lee, C.-S., Franklin, A., Guan, X., Pop, E., Antoniadis, D., Wong, P.: Compact model for carbon nanotube field-effect transistors including nonidealities and calibrated with experimental data down to 9-nm gate length. IEEE Trans. Electron. Dev. 60, 1834–1843 (2013). doi:10.1109/TED.2013.2258023 CrossRef Luo, J., Wei, L., Lee, C.-S., Franklin, A., Guan, X., Pop, E., Antoniadis, D., Wong, P.: Compact model for carbon nanotube field-effect transistors including nonidealities and calibrated with experimental data down to 9-nm gate length. IEEE Trans. Electron. Dev. 60, 1834–1843 (2013). doi:10.​1109/​TED.​2013.​2258023 CrossRef
16.
Zurück zum Zitat Claus, M., Haferlach, M., Gross, D., Schröter, M.: Critical review of CNTFET compact models. Nanotech 2, 770–775 (2012) Claus, M., Haferlach, M., Gross, D., Schröter, M.: Critical review of CNTFET compact models. Nanotech 2, 770–775 (2012)
17.
Zurück zum Zitat Zhou, X., Park, J.-Y., Huang, S., Liu, J., McEuen, P.L.: Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805-1–146805-4 (2005). doi:10.1103/PhysRevLett.95.146805 Zhou, X., Park, J.-Y., Huang, S., Liu, J., McEuen, P.L.: Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805-1–146805-4 (2005). doi:10.​1103/​PhysRevLett.​95.​146805
18.
Zurück zum Zitat Steiner, M., Engel, M., Lin, Y.-M., Wu, Y., Jenkins, K., Farmer, D.B., Humes, J.J., Yoder, N.L., Seo, J.-W.T., Green, A.A., Hersam, M.C., Krupke, R., Avouris, P.: High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl. Phys. Lett. 101, 053123-1–053123-4 (2012). doi:10.1063/1.4742325 CrossRef Steiner, M., Engel, M., Lin, Y.-M., Wu, Y., Jenkins, K., Farmer, D.B., Humes, J.J., Yoder, N.L., Seo, J.-W.T., Green, A.A., Hersam, M.C., Krupke, R., Avouris, P.: High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl. Phys. Lett. 101, 053123-1–053123-4 (2012). doi:10.​1063/​1.​4742325 CrossRef
19.
20.
Zurück zum Zitat Ning, Z.Y., Fu, M.Q., Shi, T.W., Guo, Y., Wei, X.L., Gao, S., Chen, Q.: In situ multiproperty measurements of individual nanomaterials in sem and correlation with their atomic structures. Nanotechnology 25, 275703 (2014). doi:10.1088/0957-4484/25/27/275703 CrossRef Ning, Z.Y., Fu, M.Q., Shi, T.W., Guo, Y., Wei, X.L., Gao, S., Chen, Q.: In situ multiproperty measurements of individual nanomaterials in sem and correlation with their atomic structures. Nanotechnology 25, 275703 (2014). doi:10.​1088/​0957-4484/​25/​27/​275703 CrossRef
22.
Zurück zum Zitat Grow, R.J., Wang, Q., Cao, J., Wang, D., Dai, H.: Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl. Phys. Lett. 86(9), 093104-1–093104-3 (2005). doi:10.1063/1.1872221 CrossRef Grow, R.J., Wang, Q., Cao, J., Wang, D., Dai, H.: Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl. Phys. Lett. 86(9), 093104-1–093104-3 (2005). doi:10.​1063/​1.​1872221 CrossRef
24.
Zurück zum Zitat Chen, Z., Appenzeller, J., Knoch, J., Lin, Y.-M., Avouris, P.: The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497–1502 (2005). doi:10.1021/nl0508624 Chen, Z., Appenzeller, J., Knoch, J., Lin, Y.-M., Avouris, P.: The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497–1502 (2005). doi:10.​1021/​nl0508624
25.
Zurück zum Zitat Svensson, J., Sourab, A.A., Tarakanov, Y., Lee, D.S., Park, S.J., Baek, S.J., Park, Y.W., Campbell, E.E.B.: The dependence of the schottky barrier height on carbon nanotube diameter for Pd-carbon nanotube contacts. Nanotechnology 20, 175204 (2009). doi:10.1088/0957-4484/20/17/175204 CrossRef Svensson, J., Sourab, A.A., Tarakanov, Y., Lee, D.S., Park, S.J., Baek, S.J., Park, Y.W., Campbell, E.E.B.: The dependence of the schottky barrier height on carbon nanotube diameter for Pd-carbon nanotube contacts. Nanotechnology 20, 175204 (2009). doi:10.​1088/​0957-4484/​20/​17/​175204 CrossRef
27.
Zurück zum Zitat Charlier, J.-C., Eklund, P., Zhu, J., Ferrari, A.: Electron and phonon properties of graphene: their relationship with carbon nanotubes, In: Carbon Nanotubes, vol. 111 of Topics in Applied Physics, Springer, Berlin. doi:10.1007/978-3-540-72865-8_21, pp. 673–709 (2008) Charlier, J.-C., Eklund, P., Zhu, J., Ferrari, A.: Electron and phonon properties of graphene: their relationship with carbon nanotubes, In: Carbon Nanotubes, vol. 111 of Topics in Applied Physics, Springer, Berlin. doi:10.​1007/​978-3-540-72865-8_​21, pp. 673–709 (2008)
28.
Zurück zum Zitat Bellucci, S., Onorato, P.: Transport properties in carbon nanotubes, In: Bellucci, S. (Ed.), Physical Properties of Ceramic and Carbon Nanoscale Structures. Lecture Notes in Nanoscale Science and Technology, pp. 45–109. Springer, Berlin. doi:10.1007/978-3-642-15778-3_2 (2011) Bellucci, S., Onorato, P.: Transport properties in carbon nanotubes, In: Bellucci, S. (Ed.), Physical Properties of Ceramic and Carbon Nanoscale Structures. Lecture Notes in Nanoscale Science and Technology, pp. 45–109. Springer, Berlin. doi:10.​1007/​978-3-642-15778-3_​2 (2011)
33.
Zurück zum Zitat Valavala, P.K., Banyai, D., Seel, M., Pati, R.: Self-consistent calculations of strain-induced band gap changes in semiconducting \((n,0)\) carbon nanotubes. Phys. Rev. B 78, 235430-1–235430-6 (2008). doi:10.1103/PhysRevB.78.235430 CrossRef Valavala, P.K., Banyai, D., Seel, M., Pati, R.: Self-consistent calculations of strain-induced band gap changes in semiconducting \((n,0)\) carbon nanotubes. Phys. Rev. B 78, 235430-1–235430-6 (2008). doi:10.​1103/​PhysRevB.​78.​235430 CrossRef
34.
Zurück zum Zitat Sreekala, S., Peng, X.-H., Ajayan, P.M., Nayak, S.K.: Effect of strain on the band gap and effective mass of zigzag single-wall carbon nanotubes: first-principles density-functional calculations. Phys. Rev. B 77, 155434-1–155434-7 (2008). doi:10.1103/PhysRevB.77.155434 CrossRef Sreekala, S., Peng, X.-H., Ajayan, P.M., Nayak, S.K.: Effect of strain on the band gap and effective mass of zigzag single-wall carbon nanotubes: first-principles density-functional calculations. Phys. Rev. B 77, 155434-1–155434-7 (2008). doi:10.​1103/​PhysRevB.​77.​155434 CrossRef
36.
Zurück zum Zitat Muoth, M., Chikkadi, K., Liu, Y., Hierold, C.: Suspended cnt-FET piezoresistive strain gauges: chirality assignment and quantitative analysis. In: IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). doi:10.1109/MEMSYS.2013.6474287, pp. 496–499 (2013) Muoth, M., Chikkadi, K., Liu, Y., Hierold, C.: Suspended cnt-FET piezoresistive strain gauges: chirality assignment and quantitative analysis. In: IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). doi:10.​1109/​MEMSYS.​2013.​6474287, pp. 496–499 (2013)
Metadaten
Titel
Empirical transport model of strained CNT transistors used for sensor applications
verfasst von
Christian Wagner
Jörg Schuster
Thomas Gessner
Publikationsdatum
20.04.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0823-4

Weitere Artikel der Ausgabe 3/2016

Journal of Computational Electronics 3/2016 Zur Ausgabe

Neuer Inhalt