Skip to main content
Erschienen in: Journal of Computational Electronics 3/2016

15.07.2016

Analog and RF performance of doping-less tunnel FETs with \(\hbox {Si}_{0.55} \hbox {Ge}_{0.45}\) source

verfasst von: Sunny Anand, R. K. Sarin

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper reports studies of a doping-less tunnel field-effect transistor (TFET) with a \(\hbox {Si}_{0.55} \hbox {Ge}_{0.45}\) source structure aimed at improving the performance of charge-plasma-based doping-less TFETs. The proposed device achieves an improved ON-state current (\(I_{{\mathrm{ON}}} \sim {4.88} \times {10}^{-5}\,{\mathrm{A}}/\upmu {\mathrm{m}}\)), an \(I_\mathrm{ON}/I_\mathrm{OFF}\) ratio of \({6.91} \times {10}^{12}\), an average subthreshold slope (\(\hbox {AV-SS}\)) of \(\sim \) \({64.79}\,{\mathrm{mV/dec}}\), and a point subthreshold slope (SS) of 14.95 mV/dec. This paper compares the analog and radio of frequency (RF) parameters of this device with those of a conventional doping-less TFET (DLTFET), including the transconductance (\(g_{{\mathrm{m}}}\)), transconductance-to-drain-current ratio \((g_\mathrm{m}/I_\mathrm{D})\), output conductance \((g_\mathrm{d})\), intrinsic gain (\(A_{{\mathrm{V}}}\)), early voltage (\(V_{{\mathrm{EA}}}\)), total gate capacitance (\( C_{{\mathrm{gg}}}\)), and unity-gain frequency (\(f_{{\mathrm{T}}}\)). Based on the simulated results, the \(\hbox {Si}_{0.55}\hbox {Ge}_{0.45}\)-source DLTFET is found to offer superior analog as well as RF performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bhuwalka, K.K., Schulze, J., Eisele, I.: Performance Enhancement of Vertical Tunnel Field-Effect Transistor with SiGe in the \(\delta \)p+ layer. Jpn. J. Appl. Phys. 43(7A), 4073–4078 (2004)CrossRef Bhuwalka, K.K., Schulze, J., Eisele, I.: Performance Enhancement of Vertical Tunnel Field-Effect Transistor with SiGe in the \(\delta \)p+ layer. Jpn. J. Appl. Phys. 43(7A), 4073–4078 (2004)CrossRef
2.
Zurück zum Zitat Ionescu, A.M., Riel, H.: Tunnel Field-Effect Transistors as Energy Efficient Electronic Switches. Nature 479(7373), 329–337 (2011)CrossRef Ionescu, A.M., Riel, H.: Tunnel Field-Effect Transistors as Energy Efficient Electronic Switches. Nature 479(7373), 329–337 (2011)CrossRef
3.
Zurück zum Zitat Bhuwalka, K.K., Schulze, J., Eisele, I.: Scaling the vertical Tunnel FET with Tunnel Bandgap Modulation and Gate Work Function Engineering. IEEE Trans. Electron Devices 52(5), 909–917 (2005)CrossRef Bhuwalka, K.K., Schulze, J., Eisele, I.: Scaling the vertical Tunnel FET with Tunnel Bandgap Modulation and Gate Work Function Engineering. IEEE Trans. Electron Devices 52(5), 909–917 (2005)CrossRef
4.
Zurück zum Zitat Choi, W.Y., Park, B.G., Lee, J.D.: Tunneling Field-Effect Transistors (TFETs) with Subthreshold Swing (SS) less than 60 mV/dec. IEEE Electron Device Letters 28(8), 743–745 (2007)CrossRef Choi, W.Y., Park, B.G., Lee, J.D.: Tunneling Field-Effect Transistors (TFETs) with Subthreshold Swing (SS) less than 60 mV/dec. IEEE Electron Device Letters 28(8), 743–745 (2007)CrossRef
5.
Zurück zum Zitat Colinge, J.-P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, B., Blake, A., White, M., Kelleher, A.M., McCarthy, B., Murphy, R.: Nanowire Transistors without Junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)CrossRef Colinge, J.-P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, B., Blake, A., White, M., Kelleher, A.M., McCarthy, B., Murphy, R.: Nanowire Transistors without Junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)CrossRef
6.
Zurück zum Zitat Aydin, C., Zaslavsky, A., Luryi, S., Cristoloveanu, S., Mariolle, D., Fraboulet, D., et al.: Lateral Interband Tunneling Transistor in Silicon-on-Insulator. Appl. Phys. Lett. 84(10), 1780–1782 (2004)CrossRef Aydin, C., Zaslavsky, A., Luryi, S., Cristoloveanu, S., Mariolle, D., Fraboulet, D., et al.: Lateral Interband Tunneling Transistor in Silicon-on-Insulator. Appl. Phys. Lett. 84(10), 1780–1782 (2004)CrossRef
7.
Zurück zum Zitat Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance Comparison between P-I-N Tunneling Transistors and conventional MOSFETs. IEEE Trans Electron Devices 56(3), 456–465 (2009)CrossRef Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance Comparison between P-I-N Tunneling Transistors and conventional MOSFETs. IEEE Trans Electron Devices 56(3), 456–465 (2009)CrossRef
8.
Zurück zum Zitat Boucart, K., Ionescu, A.M.: Double Gate Tunnel FET with High-K Gate Dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef Boucart, K., Ionescu, A.M.: Double Gate Tunnel FET with High-K Gate Dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef
9.
Zurück zum Zitat Lou, H., Lining, Zhang, Yunxi, Zhu, Xinnan, Lin, Shengqi, Yang, Jin, He, Chan, M.: A Junctionless Nanowire Transistor With a Dual-Material Gate. IEEE Transaction on Electron Devices 59(7), 1829–1836 (2012)CrossRef Lou, H., Lining, Zhang, Yunxi, Zhu, Xinnan, Lin, Shengqi, Yang, Jin, He, Chan, M.: A Junctionless Nanowire Transistor With a Dual-Material Gate. IEEE Transaction on Electron Devices 59(7), 1829–1836 (2012)CrossRef
10.
Zurück zum Zitat Beneventi, G.B., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Dual-Metal-Gate InAs Tunnel FET with Enhanced Turn-On Steepness and High On-Current. IEEE Transactions on Electron Devices 61(3), 776–784 (2014) Beneventi, G.B., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Dual-Metal-Gate InAs Tunnel FET with Enhanced Turn-On Steepness and High On-Current. IEEE Transactions on Electron Devices 61(3), 776–784 (2014)
11.
Zurück zum Zitat Narang, Rakh, Saxena, Manoj, Gupta, Gupta, R.S., Mridula, Gupta: Effect of Temperature and Gate Stack on the Linearity and Analog Performance of Double Gate Tunnel FET, pp. 466–475. Springer Berlin Heidelberg, 197, (2011) Narang, Rakh, Saxena, Manoj, Gupta, Gupta, R.S., Mridula, Gupta: Effect of Temperature and Gate Stack on the Linearity and Analog Performance of Double Gate Tunnel FET, pp. 466–475. Springer Berlin Heidelberg, 197, (2011)
12.
Zurück zum Zitat Zhao, Q.T., Hartmann, J.-M., Mantl, S.: An Improved Si Tunnel Field Effect Transistor with a Buried Strained Si\(_{1-x}\)Ge\(_{x}\) Source. Electron Device Letters, IEEE 32(11), 1480–1482 (2011)CrossRef Zhao, Q.T., Hartmann, J.-M., Mantl, S.: An Improved Si Tunnel Field Effect Transistor with a Buried Strained Si\(_{1-x}\)Ge\(_{x}\) Source. Electron Device Letters, IEEE 32(11), 1480–1482 (2011)CrossRef
13.
Zurück zum Zitat Wang, Pei-Yu., Tsui, Bing-Yue: Si1-xGex Epitaxial Tunnel Layer Structure for P-Channel Tunnel FET Improvement. IEEE Transaction on Electron Devices 60(12), 4098–4104 (2013)CrossRef Wang, Pei-Yu., Tsui, Bing-Yue: Si1-xGex Epitaxial Tunnel Layer Structure for P-Channel Tunnel FET Improvement. IEEE Transaction on Electron Devices 60(12), 4098–4104 (2013)CrossRef
14.
Zurück zum Zitat Damrongplasit, N., Kim’, S.H., Liu, T.J.K.: Study of Random Dopant Fluctuation Induced Variability in the raised-Ge-Source TFET. IEEE Electron Device Lett 34(2), 184–186 (2013)CrossRef Damrongplasit, N., Kim’, S.H., Liu, T.J.K.: Study of Random Dopant Fluctuation Induced Variability in the raised-Ge-Source TFET. IEEE Electron Device Lett 34(2), 184–186 (2013)CrossRef
15.
Zurück zum Zitat Rajasekharan, B., Hueting, R.J.E., Salm, C., van Hemert, T., Wolters, R.A.M., Schmitz, J.: Fabrication and Characterization of the Charge-Plasma Diode. IEEE Electron Device Letters 31(6), 528–530 (2010)CrossRef Rajasekharan, B., Hueting, R.J.E., Salm, C., van Hemert, T., Wolters, R.A.M., Schmitz, J.: Fabrication and Characterization of the Charge-Plasma Diode. IEEE Electron Device Letters 31(6), 528–530 (2010)CrossRef
16.
Zurück zum Zitat Anand, Sunny, Intekhab Amin, S., Sarin, R.K.: Analog Performance Investigation of Dual Electrode Based Doping-Less Tunnel FET”. Journal of Computational Electronics 15(1), 94–103 (2016)CrossRef Anand, Sunny, Intekhab Amin, S., Sarin, R.K.: Analog Performance Investigation of Dual Electrode Based Doping-Less Tunnel FET”. Journal of Computational Electronics 15(1), 94–103 (2016)CrossRef
17.
Zurück zum Zitat Jagadesh Kumar, M.: Doping-Less Tunnel Field Effect Transistor: Design and Investigation. IEEE Transactions on Electron Devices 60(10), 3285–3290 (2013)CrossRef Jagadesh Kumar, M.: Doping-Less Tunnel Field Effect Transistor: Design and Investigation. IEEE Transactions on Electron Devices 60(10), 3285–3290 (2013)CrossRef
18.
Zurück zum Zitat Sunny, anand, Intekhab Amin, S., Sarin, R.K.: Performance Analysis of Charge Plasma based Dual Electrode Tunnel FET. Journal of semiconductors 37(5), 054003-1-8 (2016) Sunny, anand, Intekhab Amin, S., Sarin, R.K.: Performance Analysis of Charge Plasma based Dual Electrode Tunnel FET. Journal of semiconductors 37(5), 054003-1-8 (2016)
19.
Zurück zum Zitat Sunny, Anand, Sarin, R.K.: An Analysis on Ambipolar Reduction Techniques for Charge Plasma Based Tunnel FETs. Journal of Nanoelectronics and Optoelectronics 11(4), 543–550 (2016)CrossRef Sunny, Anand, Sarin, R.K.: An Analysis on Ambipolar Reduction Techniques for Charge Plasma Based Tunnel FETs. Journal of Nanoelectronics and Optoelectronics 11(4), 543–550 (2016)CrossRef
20.
Zurück zum Zitat Walke, A.M., Vandooren, A., Rooyackers, R., Leonelli, D., Hikavyy, A., Loo, R., Verhulst, A.S., Ka, Kuo-Hsing, Huyghebaert, C., Groeseneken, G., Rao, V.R., Bhuwalka, K.K., Heyns, M.M., Collaert, N., Thean, A.V.-Y.: Fabrication and Analysis of a Si/Si\(_{0.55 }\)Ge\(_{0.45}\) Heterojunction Line Tunnel FET. IEEE Transactions on Electron Devices 61(3), 707–715 (2014)CrossRef Walke, A.M., Vandooren, A., Rooyackers, R., Leonelli, D., Hikavyy, A., Loo, R., Verhulst, A.S., Ka, Kuo-Hsing, Huyghebaert, C., Groeseneken, G., Rao, V.R., Bhuwalka, K.K., Heyns, M.M., Collaert, N., Thean, A.V.-Y.: Fabrication and Analysis of a Si/Si\(_{0.55 }\)Ge\(_{0.45}\) Heterojunction Line Tunnel FET. IEEE Transactions on Electron Devices 61(3), 707–715 (2014)CrossRef
21.
Zurück zum Zitat ATLAS Device Simulation Software: Silvaco Int. Santa Clara, CA, USA (2012) ATLAS Device Simulation Software: Silvaco Int. Santa Clara, CA, USA (2012)
22.
Zurück zum Zitat Omura, Y., Horiguchi, S., Tabe, M., Kishi, K., et al.: Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs. IEEE Trans. Electron Devices 14(12), 569 (1993)CrossRef Omura, Y., Horiguchi, S., Tabe, M., Kishi, K., et al.: Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs. IEEE Trans. Electron Devices 14(12), 569 (1993)CrossRef
23.
Zurück zum Zitat Kilchytska, V., Neve, A., Vancaillie, L., Levacq, D., Adriaensen, S., van Meer, H., de Meyer, K., Raynaud, C., Dehan, M., Raskin, J.P., Flandre, D.: Influence of Device Engineering on The Analog and RF of SOI MOSFETs. IEEE Transactions on Electron Devices 50(3), 577–588 (2003)CrossRef Kilchytska, V., Neve, A., Vancaillie, L., Levacq, D., Adriaensen, S., van Meer, H., de Meyer, K., Raynaud, C., Dehan, M., Raskin, J.P., Flandre, D.: Influence of Device Engineering on The Analog and RF of SOI MOSFETs. IEEE Transactions on Electron Devices 50(3), 577–588 (2003)CrossRef
24.
Zurück zum Zitat Patel, Nayan, Ramesha, A., Mahapatra, Santanu: Drive current boosting of n-type tunnel FET with strained SiGe layer at source. Microelectronics Journal 39, 1671–1677 (2008)CrossRef Patel, Nayan, Ramesha, A., Mahapatra, Santanu: Drive current boosting of n-type tunnel FET with strained SiGe layer at source. Microelectronics Journal 39, 1671–1677 (2008)CrossRef
25.
Zurück zum Zitat Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: Effective Capacitance and Drive Current for Tunnel FET (TFET) CV/I Estimation. IEEE Transactions on Electron Devices 56(9), 2092–2098 (2009)CrossRef Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: Effective Capacitance and Drive Current for Tunnel FET (TFET) CV/I Estimation. IEEE Transactions on Electron Devices 56(9), 2092–2098 (2009)CrossRef
Metadaten
Titel
Analog and RF performance of doping-less tunnel FETs with source
verfasst von
Sunny Anand
R. K. Sarin
Publikationsdatum
15.07.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0859-5

Weitere Artikel der Ausgabe 3/2016

Journal of Computational Electronics 3/2016 Zur Ausgabe

Neuer Inhalt