Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2009

01.06.2009

A kinetic theory approach to capturing interneuronal correlation: the feed-forward case

verfasst von: Chin-Yueh Liu, Duane Q. Nykamp

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present an approach for using kinetic theory to capture first and second order statistics of neuronal activity. We coarse grain neuronal networks into populations of neurons and calculate the population average firing rate and output cross-correlation in response to time varying correlated input. We derive coupling equations for the populations based on first and second order statistics of the network connectivity. This coupling scheme is based on the hypothesis that second order statistics of the network connectivity are sufficient to determine second order statistics of neuronal activity. We implement a kinetic theory representation of a simple feed-forward network and demonstrate that the kinetic theory model captures key aspects of the emergence and propagation of correlations in the network, as long as the correlations do not become too strong. By analyzing the correlated activity of feed-forward networks with a variety of connectivity patterns, we provide evidence supporting our hypothesis of the sufficiency of second order connectivity statistics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abbott, L. F., & van Vreeswijk, C. (1993). Asynchronous states in networks of pulse-coupled oscillators. Physical Review E., 48, 1483–1490.CrossRef Abbott, L. F., & van Vreeswijk, C. (1993). Asynchronous states in networks of pulse-coupled oscillators. Physical Review E., 48, 1483–1490.CrossRef
Zurück zum Zitat Apfaltrer, F., Ly, C., & Tranchina, D. (2006). Population density methods for stochastic neurons with realistic synaptic kinetics: Firing rate dynamics and fast computational methods. Network: Computation in Neural Systems, 17, 373–418.CrossRef Apfaltrer, F., Ly, C., & Tranchina, D. (2006). Population density methods for stochastic neurons with realistic synaptic kinetics: Firing rate dynamics and fast computational methods. Network: Computation in Neural Systems, 17, 373–418.CrossRef
Zurück zum Zitat Barna, G., Gröbler, T., & Érdi, P. (1998). Statistical model of the hippocampal CA3 region—II. The population framework: Model of rhythmic activity in the CA3 slice. Biological Cybernetics, 79, 309–321.PubMedCrossRef Barna, G., Gröbler, T., & Érdi, P. (1998). Statistical model of the hippocampal CA3 region—II. The population framework: Model of rhythmic activity in the CA3 slice. Biological Cybernetics, 79, 309–321.PubMedCrossRef
Zurück zum Zitat Binder, M. D., & Powers, R. K. (2001). Relationship between simulated common synaptic input and discharge synchrony in cat spinal motoneurons. Journal of Neurophysiology, 86, 2266–2275.PubMed Binder, M. D., & Powers, R. K. (2001). Relationship between simulated common synaptic input and discharge synchrony in cat spinal motoneurons. Journal of Neurophysiology, 86, 2266–2275.PubMed
Zurück zum Zitat Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11(7), 1621–1671.PubMedCrossRef Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11(7), 1621–1671.PubMedCrossRef
Zurück zum Zitat Cai, D., Tao, L., Rangan, A., & McLaughlin, D. (2006). Kinetic theory for neuronal network dynamics. Communications in Mathematical Sciences, 4, 97–127. Cai, D., Tao, L., Rangan, A., & McLaughlin, D. (2006). Kinetic theory for neuronal network dynamics. Communications in Mathematical Sciences, 4, 97–127.
Zurück zum Zitat Casti, A. R., Omurtag, A., Sornborger, A., Kaplan, E., Knight, B., Victor, J., et al. (2002). A population study of integrate-and-fire-or-burst neurons. Neural Computation, 14, 957–86.PubMedCrossRef Casti, A. R., Omurtag, A., Sornborger, A., Kaplan, E., Knight, B., Victor, J., et al. (2002). A population study of integrate-and-fire-or-burst neurons. Neural Computation, 14, 957–86.PubMedCrossRef
Zurück zum Zitat Câteau, H., & Fukai, F. (2001). Fokker–Planck approach to the pulse packet propagation in synfire chain. Neural Networks, 14, 675–685.PubMedCrossRef Câteau, H., & Fukai, F. (2001). Fokker–Planck approach to the pulse packet propagation in synfire chain. Neural Networks, 14, 675–685.PubMedCrossRef
Zurück zum Zitat Câteau, H., & Reyes, A. D. (2006). Relation between single neuron and population spiking statistics and effects on network activity. Physical Review Letters, 96, 058, 101.CrossRef Câteau, H., & Reyes, A. D. (2006). Relation between single neuron and population spiking statistics and effects on network activity. Physical Review Letters, 96, 058, 101.CrossRef
Zurück zum Zitat Diesmann, M., Gewaltig, M. O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402, 529–533.PubMedCrossRef Diesmann, M., Gewaltig, M. O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402, 529–533.PubMedCrossRef
Zurück zum Zitat Doiron, B., Rinzel, J., & Reyes, A. (2006). Stochastic synchronization in finite size spiking networks. Physical Review E., 74, 030, 903.CrossRef Doiron, B., Rinzel, J., & Reyes, A. (2006). Stochastic synchronization in finite size spiking networks. Physical Review E., 74, 030, 903.CrossRef
Zurück zum Zitat Dorn, J. D., & Ringach, D. L. (2003). Estimating membrane voltage correlations from extracellular spike trains. Journal of Neurophysiology, 89, 2271–2278.PubMedCrossRef Dorn, J. D., & Ringach, D. L. (2003). Estimating membrane voltage correlations from extracellular spike trains. Journal of Neurophysiology, 89, 2271–2278.PubMedCrossRef
Zurück zum Zitat Galán, R. F., Fourcaud-Trocmé, N., Ermentrout, G. B., & Urban, N. N. (2006). Correlation-induced synchronization of oscillations in olfactory bulb neurons. Journal of Neuroscience, 26, 3646–3655.PubMedCrossRef Galán, R. F., Fourcaud-Trocmé, N., Ermentrout, G. B., & Urban, N. N. (2006). Correlation-induced synchronization of oscillations in olfactory bulb neurons. Journal of Neuroscience, 26, 3646–3655.PubMedCrossRef
Zurück zum Zitat Gardiner, C. W. (2004).Handbook of stochastic methods for physics, chemistry and the natural sciences, 3rd edn. New York: Springer. Gardiner, C. W. (2004).Handbook of stochastic methods for physics, chemistry and the natural sciences, 3rd edn. New York: Springer.
Zurück zum Zitat Gerstner, W. (2000). Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking. Neural Computation, 12, 43–89.PubMedCrossRef Gerstner, W. (2000). Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking. Neural Computation, 12, 43–89.PubMedCrossRef
Zurück zum Zitat Hasegawa, H. (2003). Dynamical mean-field theory of spiking neuron ensembles: Response to a single spike with independent noises. Physical Review E., 67, 041, 903.CrossRef Hasegawa, H. (2003). Dynamical mean-field theory of spiking neuron ensembles: Response to a single spike with independent noises. Physical Review E., 67, 041, 903.CrossRef
Zurück zum Zitat Haskell, E., Nykamp, D. Q., & Tranchina, D. (2001). Population density methods for large-scale modeling of neuronal networks with realistic synaptic kinetics: Cutting the dimension down to size. Network: Computation in Neural Systems, 12(2), 141–174.CrossRef Haskell, E., Nykamp, D. Q., & Tranchina, D. (2001). Population density methods for large-scale modeling of neuronal networks with realistic synaptic kinetics: Cutting the dimension down to size. Network: Computation in Neural Systems, 12(2), 141–174.CrossRef
Zurück zum Zitat Hildebrand, E. J., Buice, M. A., & Chow, C. C. (2007). Kinetic theory of coupled oscillators. Physical Review Letters, 98, 054, 101.CrossRef Hildebrand, E. J., Buice, M. A., & Chow, C. C. (2007). Kinetic theory of coupled oscillators. Physical Review Letters, 98, 054, 101.CrossRef
Zurück zum Zitat Hohn, N., & Burkitt, A. N. (2001). Shot noise in the leaky integrate-and-fire neuron. Physical Review E., 63, 031, 902.CrossRef Hohn, N., & Burkitt, A. N. (2001). Shot noise in the leaky integrate-and-fire neuron. Physical Review E., 63, 031, 902.CrossRef
Zurück zum Zitat Huertas, M. A., & Smith, G. (2006). A multivariate population density model of the dlgn/pgn relay. Journal of Computational Neuroscience, 21, 171–89.PubMedCrossRef Huertas, M. A., & Smith, G. (2006). A multivariate population density model of the dlgn/pgn relay. Journal of Computational Neuroscience, 21, 171–89.PubMedCrossRef
Zurück zum Zitat Ichimaru, S. (1973) Basic principles of plasma physics: A statistical approach. New York: Benjamin. Ichimaru, S. (1973) Basic principles of plasma physics: A statistical approach. New York: Benjamin.
Zurück zum Zitat Jaynes, E. T. (1957) Information theory and statistical mechanics. Physical Review, 106, 62–79.CrossRef Jaynes, E. T. (1957) Information theory and statistical mechanics. Physical Review, 106, 62–79.CrossRef
Zurück zum Zitat Knight, B. W. (2000). Dynamics of encoding in neuron populations: Some general mathematical features. Neural Computation, 12, 473–518.PubMedCrossRef Knight, B. W. (2000). Dynamics of encoding in neuron populations: Some general mathematical features. Neural Computation, 12, 473–518.PubMedCrossRef
Zurück zum Zitat Knight, B. W., Manin, D., & Sirovich, L. (1996). Dynamical models of interacting neuron populations. In E. C., Gerf, (Ed.), Symposium on robotics and cybernetics: Computational engineering in systems applications, cite scientifique Lille, France. Knight, B. W., Manin, D., & Sirovich, L. (1996). Dynamical models of interacting neuron populations. In E. C., Gerf, (Ed.), Symposium on robotics and cybernetics: Computational engineering in systems applications, cite scientifique Lille, France.
Zurück zum Zitat Litvak, V., Sompolinsky, H., Segev, I., & Abeles, M. (2003). On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. Journal of Neuroscience, 23, 3006–3015.PubMed Litvak, V., Sompolinsky, H., Segev, I., & Abeles, M. (2003). On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. Journal of Neuroscience, 23, 3006–3015.PubMed
Zurück zum Zitat Ly, C., & Tranchina, D. (2008). Spike train statistics and dynamics with synaptic input from any renewal process: A population density approach. Neural Computation. doi:10.1162/neco.2008.03-08-743. Ly, C., & Tranchina, D. (2008). Spike train statistics and dynamics with synaptic input from any renewal process: A population density approach. Neural Computation. doi:10.​1162/​neco.​2008.​03-08-743.
Zurück zum Zitat Masuda, N., & Aihara, K. (2002). Bridging rate coding and temporal spike coding by effect of noise. Physical Review Letters, 88, 248, 101.CrossRef Masuda, N., & Aihara, K. (2002). Bridging rate coding and temporal spike coding by effect of noise. Physical Review Letters, 88, 248, 101.CrossRef
Zurück zum Zitat Mattia, M., & Del Giudice, P. (2002). Population dynamics of interacting spiking neurons. Physical Review E., 66, 051, 917.CrossRef Mattia, M., & Del Giudice, P. (2002). Population dynamics of interacting spiking neurons. Physical Review E., 66, 051, 917.CrossRef
Zurück zum Zitat McFadden, J. A. (1965) The entropy of a point process. Journal of the Society for Industrial and Applied Mathematics, 13, 988–994CrossRef McFadden, J. A. (1965) The entropy of a point process. Journal of the Society for Industrial and Applied Mathematics, 13, 988–994CrossRef
Zurück zum Zitat Meffin, H., Burkitt, A. N., & Grayden, D. B. (2004). An analytical model for the “large, fluctuating synaptic conductance state” typical of neocortical neurons in vivo. Journal of Computational Neuroscience, 16, 159–175PubMedCrossRef Meffin, H., Burkitt, A. N., & Grayden, D. B. (2004). An analytical model for the “large, fluctuating synaptic conductance state” typical of neocortical neurons in vivo. Journal of Computational Neuroscience, 16, 159–175PubMedCrossRef
Zurück zum Zitat Moreno, R., de la Rocha, J., Renart, A., & Parga, N. (2002). Response of spiking neurons to correlated inputs. Physical Review Letters, 89, 288, 101CrossRef Moreno, R., de la Rocha, J., Renart, A., & Parga, N. (2002). Response of spiking neurons to correlated inputs. Physical Review Letters, 89, 288, 101CrossRef
Zurück zum Zitat Moreno-Bote, R., & Parga, N. (2006). Auto- and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses. Physical Review Letters, 96, 028, 101.CrossRef Moreno-Bote, R., & Parga, N. (2006). Auto- and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses. Physical Review Letters, 96, 028, 101.CrossRef
Zurück zum Zitat Nicholson, D. (1992) Introduction to plasma theory. Malabar, Florida: Krieger. Nicholson, D. (1992) Introduction to plasma theory. Malabar, Florida: Krieger.
Zurück zum Zitat Nirenberg, S., & Victor, J. (2007). Analyzing the activity of large populations of neurons: How tractable is the problem? Current Opinion in Neurobiology, 17, 397–400.PubMedCrossRef Nirenberg, S., & Victor, J. (2007). Analyzing the activity of large populations of neurons: How tractable is the problem? Current Opinion in Neurobiology, 17, 397–400.PubMedCrossRef
Zurück zum Zitat Nykamp, D. Q. (2005). Revealing pairwise coupling in linear-nonlinear networks. SIAM Journal on Applied Mathematics, 65, 2005–2032.CrossRef Nykamp, D. Q. (2005). Revealing pairwise coupling in linear-nonlinear networks. SIAM Journal on Applied Mathematics, 65, 2005–2032.CrossRef
Zurück zum Zitat Nykamp, D. Q. (2007a) Exploiting history-dependent effects to infer network connectivity. SIAM Journal on Applied Mathematics, 68, 354–391.CrossRef Nykamp, D. Q. (2007a) Exploiting history-dependent effects to infer network connectivity. SIAM Journal on Applied Mathematics, 68, 354–391.CrossRef
Zurück zum Zitat Nykamp, D. Q. (2007b) A mathematical framework for inferring connectivity in probabilistic neuronal networks. Mathematical Biosciences, 205, 204–251.PubMedCrossRef Nykamp, D. Q. (2007b) A mathematical framework for inferring connectivity in probabilistic neuronal networks. Mathematical Biosciences, 205, 204–251.PubMedCrossRef
Zurück zum Zitat Nykamp, D. Q., & Tranchina, D. (2000). A. population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning. Journal of Computational Neuroscience, 8, 19–50.PubMedCrossRef Nykamp, D. Q., & Tranchina, D. (2000). A. population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning. Journal of Computational Neuroscience, 8, 19–50.PubMedCrossRef
Zurück zum Zitat Nykamp, D. Q., & Tranchina, D. (2001). A. population density approach that facilitates large-scale modeling of neural networks: Extension to slow inhibitory synapses. Neural Computation, 13, 511–546.PubMedCrossRef Nykamp, D. Q., & Tranchina, D. (2001). A. population density approach that facilitates large-scale modeling of neural networks: Extension to slow inhibitory synapses. Neural Computation, 13, 511–546.PubMedCrossRef
Zurück zum Zitat Omurtag, A., Kaplan, E., Knight, B., & Sirovich, L. (2000a) A population approach to cortical dynamics with an application to orientation tuning. Network: Computation in Neural Systems, 11, 247–260.CrossRef Omurtag, A., Kaplan, E., Knight, B., & Sirovich, L. (2000a) A population approach to cortical dynamics with an application to orientation tuning. Network: Computation in Neural Systems, 11, 247–260.CrossRef
Zurück zum Zitat Omurtag, A., Knight, B. W., & Sirovich, L. (2000b) On the simulation of large populations of neurons. Journal of Computational Neuroscience, 8, 51–63.PubMedCrossRef Omurtag, A., Knight, B. W., & Sirovich, L. (2000b) On the simulation of large populations of neurons. Journal of Computational Neuroscience, 8, 51–63.PubMedCrossRef
Zurück zum Zitat Reyes, A. D. (2003). Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nature Neuroscience, 6, 593–599.PubMedCrossRef Reyes, A. D. (2003). Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nature Neuroscience, 6, 593–599.PubMedCrossRef
Zurück zum Zitat de la Rocha, J., Doiron, B., Shea-Brown, E., Josić, K., & Reyes, A. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448, 802–806.PubMedCrossRef de la Rocha, J., Doiron, B., Shea-Brown, E., Josić, K., & Reyes, A. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448, 802–806.PubMedCrossRef
Zurück zum Zitat de la Rocha, J., Moreno-Bote, R., & Câteau, H. (2008). Propagation of temporally correlated spike trains: A Fokker-Planck analysis (in preparation). de la Rocha, J., Moreno-Bote, R., & Câteau, H. (2008). Propagation of temporally correlated spike trains: A Fokker-Planck analysis (in preparation).
Zurück zum Zitat van Rossum, M. C. W., Turrigiano, G. G., & Nelson, S. B. (2002). Fast propagation of firing rates through layered networks of noisy neurons. Journal of Neuroscience, 22, 1956–1966.PubMed van Rossum, M. C. W., Turrigiano, G. G., & Nelson, S. B. (2002). Fast propagation of firing rates through layered networks of noisy neurons. Journal of Neuroscience, 22, 1956–1966.PubMed
Zurück zum Zitat Saad, Y., & Schultz, M. H. (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7, 856–869.CrossRef Saad, Y., & Schultz, M. H. (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7, 856–869.CrossRef
Zurück zum Zitat Salinas, E., & Sejnowski, T. (2002). Integrate-and-fire neurons driven by correlated stochastic input. Neural Computation, 14, 2111–2155.PubMedCrossRef Salinas, E., & Sejnowski, T. (2002). Integrate-and-fire neurons driven by correlated stochastic input. Neural Computation, 14, 2111–2155.PubMedCrossRef
Zurück zum Zitat Schneidman, E., Berry, M. J. II, Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440, 1007–1012.PubMedCrossRef Schneidman, E., Berry, M. J. II, Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440, 1007–1012.PubMedCrossRef
Zurück zum Zitat Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86, 1916–1936.PubMed Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86, 1916–1936.PubMed
Zurück zum Zitat Shea-Brown, E., Josić, K., de la Rocha, J., & Doiron, B. (2008). Correlation and synchrony transfer in integrate-and-fire neurons: Basic properties and consequences for coding. Physical Review Letters, 100, 108, 102.CrossRef Shea-Brown, E., Josić, K., de la Rocha, J., & Doiron, B. (2008). Correlation and synchrony transfer in integrate-and-fire neurons: Basic properties and consequences for coding. Physical Review Letters, 100, 108, 102.CrossRef
Zurück zum Zitat Shinomoto, S., Shima, K., & Tanji, J. (2003). Differences in spiking patterns among cortical neurons. Neural Computation, 15, 2823–2842.PubMedCrossRef Shinomoto, S., Shima, K., & Tanji, J. (2003). Differences in spiking patterns among cortical neurons. Neural Computation, 15, 2823–2842.PubMedCrossRef
Zurück zum Zitat Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. Journal of Neuroscience, 26, 8254–8266.PubMedCrossRef Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. Journal of Neuroscience, 26, 8254–8266.PubMedCrossRef
Zurück zum Zitat Sirovich, L. (2008). Populations of tightly coupled neurons: The RGC/LGN system. Neural Computation, 20, 1179–1210.PubMedCrossRef Sirovich, L. (2008). Populations of tightly coupled neurons: The RGC/LGN system. Neural Computation, 20, 1179–1210.PubMedCrossRef
Zurück zum Zitat Sirovich, L., Knight, B., & Omurtag, A. (2000). Dynamics of neuronal populations: The equilibrium solution. SIAM Journal on Applied Mathematics, 60, 2009–2028.CrossRef Sirovich, L., Knight, B., & Omurtag, A. (2000). Dynamics of neuronal populations: The equilibrium solution. SIAM Journal on Applied Mathematics, 60, 2009–2028.CrossRef
Zurück zum Zitat Sirovich, L., Omurtag, A., & Lubliner, K. (2006). Dynamics of neural populations: Stability and synchrony. Network: Computation in Neural Systems, 17, 3–29.CrossRef Sirovich, L., Omurtag, A., & Lubliner, K. (2006). Dynamics of neural populations: Stability and synchrony. Network: Computation in Neural Systems, 17, 3–29.CrossRef
Zurück zum Zitat Stevens, C., & Zador, A. (1998). Input synchrony and the irregular firing of cortical neurons. Nature Neuroscience, 1, 210–207.CrossRef Stevens, C., & Zador, A. (1998). Input synchrony and the irregular firing of cortical neurons. Nature Neuroscience, 1, 210–207.CrossRef
Zurück zum Zitat Svirskis, G., & Hounsgaard, J. (2003). Influence of membrane properties on spike synchronization in neurons: theory and experiments. Network: Computation in Neural Systems 14, 747–763.CrossRef Svirskis, G., & Hounsgaard, J. (2003). Influence of membrane properties on spike synchronization in neurons: theory and experiments. Network: Computation in Neural Systems 14, 747–763.CrossRef
Zurück zum Zitat Tang, A., Jackson, D., Hobbs, J., Chen, W., Smith, J. L., Patel, H., et al. (2008). A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. Journal of Neuroscience, 28, 505–518.PubMedCrossRef Tang, A., Jackson, D., Hobbs, J., Chen, W., Smith, J. L., Patel, H., et al. (2008). A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. Journal of Neuroscience, 28, 505–518.PubMedCrossRef
Zurück zum Zitat Wang, S., Wang, W., & Liu, F. (2006). Propagation of firing rate in a feed-forward neuronal network. Physical Review Letters, 96, 018, 103. Wang, S., Wang, W., & Liu, F. (2006). Propagation of firing rate in a feed-forward neuronal network. Physical Review Letters, 96, 018, 103.
Metadaten
Titel
A kinetic theory approach to capturing interneuronal correlation: the feed-forward case
verfasst von
Chin-Yueh Liu
Duane Q. Nykamp
Publikationsdatum
01.06.2009
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2009
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-008-0116-4

Weitere Artikel der Ausgabe 3/2009

Journal of Computational Neuroscience 3/2009 Zur Ausgabe