Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2009

01.12.2009

Generating oscillatory bursts from a network of regular spiking neurons without inhibition

verfasst von: Jing Shao, Dihui Lai, Ulrike Meyer, Harald Luksch, Ralf Wessel

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Avian nucleus isthmi pars parvocellularis (Ipc) neurons are reciprocally connected with the layer 10 (L10) neurons in the optic tectum and respond with oscillatory bursts to visual stimulation. Our in vitro experiments show that both neuron types respond with regular spiking to somatic current injection and that the feedforward and feedback synaptic connections are excitatory, but of different strength and time course. To elucidate mechanisms of oscillatory bursting in this network of regularly spiking neurons, we investigated an experimentally constrained model of coupled leaky integrate-and-fire neurons with spike-rate adaptation. The model reproduces the observed Ipc oscillatory bursting in response to simulated visual stimulation. A scan through the model parameter volume reveals that Ipc oscillatory burst generation can be caused by strong and brief feedforward synaptic conductance changes. The mechanism is sensitive to the parameter values of spike-rate adaptation. In conclusion, we show that a network of regular-spiking neurons with feedforward excitation and spike-rate adaptation can generate oscillatory bursting in response to a constant input.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abbott, L. F., & Dayan, P. (1999). The effect of correlated variability on the accuracy of a population code. Neural Computation, 11, 91–101.CrossRefPubMed Abbott, L. F., & Dayan, P. (1999). The effect of correlated variability on the accuracy of a population code. Neural Computation, 11, 91–101.CrossRefPubMed
Zurück zum Zitat Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature Reviews Neuroscience, 7, 358–366.CrossRefPubMed Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature Reviews Neuroscience, 7, 358–366.CrossRefPubMed
Zurück zum Zitat Bagnoli, P., Fontanesi, G., Alesci, R., & Erichsen, J. (1992). Distribution of neuopeptide Y, substance P, and choline acetyltransferase in the developing visual system of the pigeon and effects of unilateral retina removal. Journal of Comparative Neurology, 318, 392–414.CrossRefPubMed Bagnoli, P., Fontanesi, G., Alesci, R., & Erichsen, J. (1992). Distribution of neuopeptide Y, substance P, and choline acetyltransferase in the developing visual system of the pigeon and effects of unilateral retina removal. Journal of Comparative Neurology, 318, 392–414.CrossRefPubMed
Zurück zum Zitat Brandt, S. F., & Wessel, R. (2007). Winner-take-all selection in a neural system with delayed feedback. Biol Cybernetics, 97, 221–228.CrossRef Brandt, S. F., & Wessel, R. (2007). Winner-take-all selection in a neural system with delayed feedback. Biol Cybernetics, 97, 221–228.CrossRef
Zurück zum Zitat Brandt, S. F., Pelster, A., & Wessel, R. (2006). Variational calculation of the limit cycle and its frequency in a two-neuron model with delay. Phys Rev E, 74, 036201.CrossRef Brandt, S. F., Pelster, A., & Wessel, R. (2006). Variational calculation of the limit cycle and its frequency in a two-neuron model with delay. Phys Rev E, 74, 036201.CrossRef
Zurück zum Zitat Brandt, S. F., Pelster, A., & Wessel, R. (2007). Synchronization in a neuronal feedback loop through asymmetric temporal delays. Europhysics Letters, 79, 38001.CrossRef Brandt, S. F., Pelster, A., & Wessel, R. (2007). Synchronization in a neuronal feedback loop through asymmetric temporal delays. Europhysics Letters, 79, 38001.CrossRef
Zurück zum Zitat Britto, L. R., Keyser, K. T., Lindstrom, J. M., & Karten, H. J. (1992). Immunohistochemical localization of nicotinic acetylcholine receptor subunits in the mesencephalon and diencephalon of the chick (Gallus gallus). Journal of Comparative Neurology, 317, 325–340.CrossRefPubMed Britto, L. R., Keyser, K. T., Lindstrom, J. M., & Karten, H. J. (1992). Immunohistochemical localization of nicotinic acetylcholine receptor subunits in the mesencephalon and diencephalon of the chick (Gallus gallus). Journal of Comparative Neurology, 317, 325–340.CrossRefPubMed
Zurück zum Zitat Brown, D. A., Gähwiler, B. H., Griffith, W. H., & Halliwell, J. V. (1990). Membrane currents in hippocampal neurons. Progress in Brain Research, 83, 141–160.CrossRefPubMed Brown, D. A., Gähwiler, B. H., Griffith, W. H., & Halliwell, J. V. (1990). Membrane currents in hippocampal neurons. Progress in Brain Research, 83, 141–160.CrossRefPubMed
Zurück zum Zitat Brownstone, R. M. (2006). Beginning at the end: repetitive firing properties in the final common pathway. Progress in Neurobiology, 78, 156–172.CrossRefPubMed Brownstone, R. M. (2006). Beginning at the end: repetitive firing properties in the final common pathway. Progress in Neurobiology, 78, 156–172.CrossRefPubMed
Zurück zum Zitat Buzsaki, G. (2006). Rhythms of the brain. Oxford University Press. Buzsaki, G. (2006). Rhythms of the brain. Oxford University Press.
Zurück zum Zitat Chacron, M. J., & Bastian, J. (2008). Population coding by electrosensory neurons. Journal of Neurophysiology, 99, 1825–1835.CrossRefPubMed Chacron, M. J., & Bastian, J. (2008). Population coding by electrosensory neurons. Journal of Neurophysiology, 99, 1825–1835.CrossRefPubMed
Zurück zum Zitat Chacron, M. J., Longtin, A., & Maler, L. (2005). Delayed excitatory and inhibitory feedback shape neural information transmission. Physical Review E, 72, 051917.CrossRef Chacron, M. J., Longtin, A., & Maler, L. (2005). Delayed excitatory and inhibitory feedback shape neural information transmission. Physical Review E, 72, 051917.CrossRef
Zurück zum Zitat Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron, 35, 773–782.CrossRefPubMed Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron, 35, 773–782.CrossRefPubMed
Zurück zum Zitat Coombes, S., & Bressloff, P. C. (2005). Bursting: The genesis of rhythm in the nervous system. World Scientific. Coombes, S., & Bressloff, P. C. (2005). Bursting: The genesis of rhythm in the nervous system. World Scientific.
Zurück zum Zitat Crick, F., & Koch, C. (1998). Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature, 391, 245–250.CrossRefPubMed Crick, F., & Koch, C. (1998). Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature, 391, 245–250.CrossRefPubMed
Zurück zum Zitat Destexhe, A., & Contreras, D. (2006). Neuronal computations with stochastic network states. Science, 314, 85–90.CrossRefPubMed Destexhe, A., & Contreras, D. (2006). Neuronal computations with stochastic network states. Science, 314, 85–90.CrossRefPubMed
Zurück zum Zitat Destexhe, A., & Rudolph, M. (2009). Neuronal noise. Springer. Destexhe, A., & Rudolph, M. (2009). Neuronal noise. Springer.
Zurück zum Zitat Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.CrossRefPubMed Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.CrossRefPubMed
Zurück zum Zitat Doiron, B., Chacron, M. J., Maler, L., Longtin, A., & Bastian, J. (2003). Inhibitory feedback required for network oscillatory responses to communication but not to prey stimuli. Nature, 421, 539–543.CrossRefPubMed Doiron, B., Chacron, M. J., Maler, L., Longtin, A., & Bastian, J. (2003). Inhibitory feedback required for network oscillatory responses to communication but not to prey stimuli. Nature, 421, 539–543.CrossRefPubMed
Zurück zum Zitat Doiron, B., Oswald, A. M. M., & Maler, L. (2007). Interval coding. II. Dendrite-dependent mechanisms. Journal of Neurophysiology, 97, 2744–2757.CrossRefPubMed Doiron, B., Oswald, A. M. M., & Maler, L. (2007). Interval coding. II. Dendrite-dependent mechanisms. Journal of Neurophysiology, 97, 2744–2757.CrossRefPubMed
Zurück zum Zitat Dudkin, E. A., & Gruberg, E. R. (2003). Nucleus isthmi enhances calcium influx into optic nerve fiber terminals in Rana pipiens. Brain Research, 969, 44–52.CrossRefPubMed Dudkin, E. A., & Gruberg, E. R. (2003). Nucleus isthmi enhances calcium influx into optic nerve fiber terminals in Rana pipiens. Brain Research, 969, 44–52.CrossRefPubMed
Zurück zum Zitat Dye, J. C., & Karten, H. J. (1996). An in vitro study of retinotectal transmission in the chick: role of glutamate and GABA in evoked field potentials. Visual Neuroscience, 13, 747–758.CrossRefPubMed Dye, J. C., & Karten, H. J. (1996). An in vitro study of retinotectal transmission in the chick: role of glutamate and GABA in evoked field potentials. Visual Neuroscience, 13, 747–758.CrossRefPubMed
Zurück zum Zitat Feller, M. B. (1999). Spontaneous correlated activity in developing neural circuits. Neuron, 22, 653–656.CrossRefPubMed Feller, M. B. (1999). Spontaneous correlated activity in developing neural circuits. Neuron, 22, 653–656.CrossRefPubMed
Zurück zum Zitat Fox, M. D., Snyder, A. Z., Zacks, J. M., & Raichle, M. E. (2006). Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nature Neuroscience, 9, 23–25.CrossRefPubMed Fox, M. D., Snyder, A. Z., Zacks, J. M., & Raichle, M. E. (2006). Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nature Neuroscience, 9, 23–25.CrossRefPubMed
Zurück zum Zitat Gabbiani, F., Metzner, W., Wessel, R., & Koch, C. (1996). From stimulus encoding to feature extraction in weakly electric fish. Nature, 384, 564–567.CrossRefPubMed Gabbiani, F., Metzner, W., Wessel, R., & Koch, C. (1996). From stimulus encoding to feature extraction in weakly electric fish. Nature, 384, 564–567.CrossRefPubMed
Zurück zum Zitat Gruberg, E. R., Hughes, T. E., & Karten, H. J. (1994). Synaptic interrelationships between the optic tectum and ipsilateral nucleus isthmi in Rana pipiens. Journal of Comparative Neurology, 339, 353–364.CrossRefPubMed Gruberg, E. R., Hughes, T. E., & Karten, H. J. (1994). Synaptic interrelationships between the optic tectum and ipsilateral nucleus isthmi in Rana pipiens. Journal of Comparative Neurology, 339, 353–364.CrossRefPubMed
Zurück zum Zitat Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7, 307–337.CrossRefPubMed Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7, 307–337.CrossRefPubMed
Zurück zum Zitat Hellmann, B., Manns, M., & Güntürkün, O. (2001). Nucleus isthmi, pars semilunaris as a key component of the tectofugal visual system in pigegons. Journal of Comparative Neurology, 436, 153–166.CrossRefPubMed Hellmann, B., Manns, M., & Güntürkün, O. (2001). Nucleus isthmi, pars semilunaris as a key component of the tectofugal visual system in pigegons. Journal of Comparative Neurology, 436, 153–166.CrossRefPubMed
Zurück zum Zitat Higgs, M. H., & Spain, W. J. (2009). Conditional bursting enhances resonant firing in neocortical layer 2–3 pyramidal neurons. Journal of Neuroscience, 29, 1285–1299.CrossRefPubMed Higgs, M. H., & Spain, W. J. (2009). Conditional bursting enhances resonant firing in neocortical layer 2–3 pyramidal neurons. Journal of Neuroscience, 29, 1285–1299.CrossRefPubMed
Zurück zum Zitat Holden, A. L. (1980). Field potentials evoked in the avian optic tectum by diffuse and punctiform luminous stimuli. Experimental Brain Research, 39, 427–432. Holden, A. L. (1980). Field potentials evoked in the avian optic tectum by diffuse and punctiform luminous stimuli. Experimental Brain Research, 39, 427–432.
Zurück zum Zitat Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: The MIT. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: The MIT.
Zurück zum Zitat Izhikevich, E. M., Desai, N. S., Walcott, E. C., & Hoppensteadt, F. C. (2003). Bursts as a unit of neural information: selective communication via resonance. Trends in Neuroscience, 26, 161–167.CrossRef Izhikevich, E. M., Desai, N. S., Walcott, E. C., & Hoppensteadt, F. C. (2003). Bursts as a unit of neural information: selective communication via resonance. Trends in Neuroscience, 26, 161–167.CrossRef
Zurück zum Zitat Jolivet, R., Lewis, T. J., & Gerstner, W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of Neurophysiology, 92, 959–976.CrossRefPubMed Jolivet, R., Lewis, T. J., & Gerstner, W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of Neurophysiology, 92, 959–976.CrossRefPubMed
Zurück zum Zitat Kawai, H., Lazar, R., & Metherate, R. (2007). Nicotinic control of axon excitability regulates thalamocortical transmission. Nature Neuroscience, 10, 1168–1175.CrossRefPubMed Kawai, H., Lazar, R., & Metherate, R. (2007). Nicotinic control of axon excitability regulates thalamocortical transmission. Nature Neuroscience, 10, 1168–1175.CrossRefPubMed
Zurück zum Zitat Khanbabaie, R., Mahani, A., & Wessel, R. (2007). Contextual interaction of GABAergic circuitry with dynamic synapses. Journal of Neurophysiology, 97, 2802–2811.CrossRefPubMed Khanbabaie, R., Mahani, A., & Wessel, R. (2007). Contextual interaction of GABAergic circuitry with dynamic synapses. Journal of Neurophysiology, 97, 2802–2811.CrossRefPubMed
Zurück zum Zitat Knudsen, E. I. (1982). Auditory and visual maps of spaces in the optic tectum of the owl. Journal of Neuroscience, 2, 1177–1194.PubMed Knudsen, E. I. (1982). Auditory and visual maps of spaces in the optic tectum of the owl. Journal of Neuroscience, 2, 1177–1194.PubMed
Zurück zum Zitat Koch, C. (1999). Biophysics of computation: Information processing in single neurons (pp. 85–116). Oxford University Press: New York. Koch, C. (1999). Biophysics of computation: Information processing in single neurons (pp. 85–116). Oxford University Press: New York.
Zurück zum Zitat Kohn, A. (2007). Visual adaptation: physiology, mechanisms, and functional benefits. Journal of Neurophysiology, 97, 3155–3164.CrossRefPubMed Kohn, A. (2007). Visual adaptation: physiology, mechanisms, and functional benefits. Journal of Neurophysiology, 97, 3155–3164.CrossRefPubMed
Zurück zum Zitat Krahe, R., & Gabbiani, F. (2004). Burst firing in sensory systems. Nature Review Neuroscience, 5, 13–23.CrossRef Krahe, R., & Gabbiani, F. (2004). Burst firing in sensory systems. Nature Review Neuroscience, 5, 13–23.CrossRef
Zurück zum Zitat Laing, C. R., & Longtin, A. (2003). Dynamics of deterministic and stochastic paired excitatory–inhibitory delayed feedback. Neural Computation, 15, 2779–2822.CrossRefPubMed Laing, C. R., & Longtin, A. (2003). Dynamics of deterministic and stochastic paired excitatory–inhibitory delayed feedback. Neural Computation, 15, 2779–2822.CrossRefPubMed
Zurück zum Zitat Lesica, N. A., & Stanley, G. B. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. Journal of Neuroscience, 24, 10731–10740.CrossRefPubMed Lesica, N. A., & Stanley, G. B. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. Journal of Neuroscience, 24, 10731–10740.CrossRefPubMed
Zurück zum Zitat Letelier, J. C., Mpodozis, J., Marin, G., Morales, D., Rozas, C., Madrid, C. (2000). Spatiotemporal profile of synaptic activation produced by the electrical and visual stimulation of retinal inputs to the optic tectum: a current source density analysis in the pigeon (Columbia livia). European Journal of Neuroscience, 12, 47–57.CrossRefPubMed Letelier, J. C., Mpodozis, J., Marin, G., Morales, D., Rozas, C., Madrid, C. (2000). Spatiotemporal profile of synaptic activation produced by the electrical and visual stimulation of retinal inputs to the optic tectum: a current source density analysis in the pigeon (Columbia livia). European Journal of Neuroscience, 12, 47–57.CrossRefPubMed
Zurück zum Zitat Lewis, D. V., Huguenard, J. R., Anderson, W. W., & Wilson, W. A. (1986). Membrane currents underlying bursting pacemaker activity and spike frequency adaptation in invertebrates. Advances in Neurology, 44, 235–261.PubMed Lewis, D. V., Huguenard, J. R., Anderson, W. W., & Wilson, W. A. (1986). Membrane currents underlying bursting pacemaker activity and spike frequency adaptation in invertebrates. Advances in Neurology, 44, 235–261.PubMed
Zurück zum Zitat Lisman, J. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neuroscience, 20, 38–43.CrossRef Lisman, J. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neuroscience, 20, 38–43.CrossRef
Zurück zum Zitat Luksch, H., & Golz, S. (2003). Anatomy and physiology of horizontal cells in layer 5b of the chicken optic tectum. Journal of Chemical Neuroanatomy, 25, 185–194.CrossRefPubMed Luksch, H., & Golz, S. (2003). Anatomy and physiology of horizontal cells in layer 5b of the chicken optic tectum. Journal of Chemical Neuroanatomy, 25, 185–194.CrossRefPubMed
Zurück zum Zitat Luksch, H., Cox, K., & Karten, H. J. (1998). Bottlebrush dendritic endings and large dendritic fields: motion-detecting neurons in the tectofugal pathway. Journal of Comparative Neurology, 396, 399–414.CrossRefPubMed Luksch, H., Cox, K., & Karten, H. J. (1998). Bottlebrush dendritic endings and large dendritic fields: motion-detecting neurons in the tectofugal pathway. Journal of Comparative Neurology, 396, 399–414.CrossRefPubMed
Zurück zum Zitat Luksch, H., Karten, H. J., Kleinfeld, D., & Wessel, R. (2001). Chattering and differential signal processing in identified motion sensitive neurons of parallel visual pathways in chick tectum. Journal of Neuroscience, 21, 6440–6446.PubMed Luksch, H., Karten, H. J., Kleinfeld, D., & Wessel, R. (2001). Chattering and differential signal processing in identified motion sensitive neurons of parallel visual pathways in chick tectum. Journal of Neuroscience, 21, 6440–6446.PubMed
Zurück zum Zitat Luksch, H., Khanbabaie, R., & Wessel, R. (2004). Synaptic dynamics mediate sensitivity to motion independent of stimulus details. Nature Neuroscience, 7, 380–388.CrossRefPubMed Luksch, H., Khanbabaie, R., & Wessel, R. (2004). Synaptic dynamics mediate sensitivity to motion independent of stimulus details. Nature Neuroscience, 7, 380–388.CrossRefPubMed
Zurück zum Zitat Maczko, K. A., Knudsen, P. F., & Knudsen, E. I. (2006). Auditory and visual space maps in the cholinergic nucleus isthmi pars parvocellularis in the barn owl. Journal of Neuroscience, 26, 12799–12806.CrossRefPubMed Maczko, K. A., Knudsen, P. F., & Knudsen, E. I. (2006). Auditory and visual space maps in the cholinergic nucleus isthmi pars parvocellularis in the barn owl. Journal of Neuroscience, 26, 12799–12806.CrossRefPubMed
Zurück zum Zitat Mahani, A. S., Khanbabaie, R., Luksch, H., & Wessel, R. (2006). Sparse spatial sampling for the computation of motion in multiple stages. Biological Cybernetics, 94, 276–287.CrossRefPubMed Mahani, A. S., Khanbabaie, R., Luksch, H., & Wessel, R. (2006). Sparse spatial sampling for the computation of motion in multiple stages. Biological Cybernetics, 94, 276–287.CrossRefPubMed
Zurück zum Zitat Marder, E., & Calabrese, R. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76, 687–717.PubMed Marder, E., & Calabrese, R. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76, 687–717.PubMed
Zurück zum Zitat Marin, G., Letelier, J. C., Henny, P., Sentis, E., Farfan, G., Fredes, F. (2003). Spatial organization of the pigeon tecto-rotundal pathway: An interdigitating topographic arrangement. Journal of Comparative Neurology, 458, 361–380.CrossRefPubMed Marin, G., Letelier, J. C., Henny, P., Sentis, E., Farfan, G., Fredes, F. (2003). Spatial organization of the pigeon tecto-rotundal pathway: An interdigitating topographic arrangement. Journal of Comparative Neurology, 458, 361–380.CrossRefPubMed
Zurück zum Zitat Marin, G., Mpdozis, J., Sentis, E., Ossandon, T., & Letelier, J. C. (2005). Oscillatory bursts in the optic Tectum of birds represent re-entrant signals from the nucleus isthmi pars parvocellularis. Journal of Neuroscience, 25, 7081–7089.CrossRefPubMed Marin, G., Mpdozis, J., Sentis, E., Ossandon, T., & Letelier, J. C. (2005). Oscillatory bursts in the optic Tectum of birds represent re-entrant signals from the nucleus isthmi pars parvocellularis. Journal of Neuroscience, 25, 7081–7089.CrossRefPubMed
Zurück zum Zitat Marin, G., Salas, C., Sentic, E., Rojas, X., Letelier, J. C., & Mpodozis, J. (2007). A cholinergic gating mechanism controlled by competitive interactions in the optic tectum of the pigeon. Journal of Neuroscience, 27, 8112–8121.CrossRefPubMed Marin, G., Salas, C., Sentic, E., Rojas, X., Letelier, J. C., & Mpodozis, J. (2007). A cholinergic gating mechanism controlled by competitive interactions in the optic tectum of the pigeon. Journal of Neuroscience, 27, 8112–8121.CrossRefPubMed
Zurück zum Zitat McCormick, D. A., & Huguenard, J. R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68, 1384–1400.PubMed McCormick, D. A., & Huguenard, J. R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68, 1384–1400.PubMed
Zurück zum Zitat Medina, L., & Reiner, A. (1994). Distribution of choline acetyltransferase immunoreativity in the pigeon brain. Journal of Comparative Neurology, 342, 497–537.CrossRefPubMed Medina, L., & Reiner, A. (1994). Distribution of choline acetyltransferase immunoreativity in the pigeon brain. Journal of Comparative Neurology, 342, 497–537.CrossRefPubMed
Zurück zum Zitat Meyer, U., Shao, J., Chakrabarty, S., Brandt, S. F., Luksch, H., & Wessel, R. (2008). Distributed delays stabilize neural feedback systems. Biological Cybernetics, 99, 79–87.CrossRefPubMed Meyer, U., Shao, J., Chakrabarty, S., Brandt, S. F., Luksch, H., & Wessel, R. (2008). Distributed delays stabilize neural feedback systems. Biological Cybernetics, 99, 79–87.CrossRefPubMed
Zurück zum Zitat Milton, J. (1996). Dynamics of small neural populations. CRM Monograph Series. Milton, J. (1996). Dynamics of small neural populations. CRM Monograph Series.
Zurück zum Zitat Nesse, W. H., Borisyuk, A., & Bressloff, P. C. (2008). Fluctuation-driven rhythmogenesis in an excitatory neuronal network with slow adaptation. Journal of Computational Neuroscience, 25, 317–333.CrossRefPubMed Nesse, W. H., Borisyuk, A., & Bressloff, P. C. (2008). Fluctuation-driven rhythmogenesis in an excitatory neuronal network with slow adaptation. Journal of Computational Neuroscience, 25, 317–333.CrossRefPubMed
Zurück zum Zitat Neuenschwander, S., & Varela, F. J. (1993). Visually triggered neuronal oscillations in the pigeon: an autocorrelation study of tectal activity. European Journal of Neuroscience, 5, 870–881.CrossRefPubMed Neuenschwander, S., & Varela, F. J. (1993). Visually triggered neuronal oscillations in the pigeon: an autocorrelation study of tectal activity. European Journal of Neuroscience, 5, 870–881.CrossRefPubMed
Zurück zum Zitat Neuenschwander, S., Engel, A. K., Konig, P., Singer, W., & Varela, F. J. (1996). Synchronization of neuronal responses in the optic tectum of awake pigeons. Visual Neuroscience, 13, 575–584.CrossRefPubMed Neuenschwander, S., Engel, A. K., Konig, P., Singer, W., & Varela, F. J. (1996). Synchronization of neuronal responses in the optic tectum of awake pigeons. Visual Neuroscience, 13, 575–584.CrossRefPubMed
Zurück zum Zitat O’Donovan, M. J. (1999). The origin of spontaneous activity in developing networks of the vertebrate nervous system. Current Opinion in Neurobiology, 9, 94–104.CrossRefPubMed O’Donovan, M. J. (1999). The origin of spontaneous activity in developing networks of the vertebrate nervous system. Current Opinion in Neurobiology, 9, 94–104.CrossRefPubMed
Zurück zum Zitat Oswald, A. M., Chacron, M. J., Doiron, B., Bastian, J., & Maler, L. (2004). Parallel processing of sensory input by bursts and isolated spikes. Journal of Neuroscience, 24, 4351–4362.CrossRefPubMed Oswald, A. M., Chacron, M. J., Doiron, B., Bastian, J., & Maler, L. (2004). Parallel processing of sensory input by bursts and isolated spikes. Journal of Neuroscience, 24, 4351–4362.CrossRefPubMed
Zurück zum Zitat Paninski, L., Pillow, J. W., & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Computation, 16, 2533–2561.CrossRefPubMed Paninski, L., Pillow, J. W., & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Computation, 16, 2533–2561.CrossRefPubMed
Zurück zum Zitat Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11003–11013.CrossRefPubMed Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11003–11013.CrossRefPubMed
Zurück zum Zitat Reinagel, P., Godwin, D., Sherman, S. M., & Koch, C. (1999). Encoding of visual information by LGN bursts. Journal of Neurophysiology, 81, 2558–2569.PubMed Reinagel, P., Godwin, D., Sherman, S. M., & Koch, C. (1999). Encoding of visual information by LGN bursts. Journal of Neurophysiology, 81, 2558–2569.PubMed
Zurück zum Zitat Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods of neuronal modeling: From Synapses to networks (2nd ed., pp. 252–291). Cambridge: Bradford. Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods of neuronal modeling: From Synapses to networks (2nd ed., pp. 252–291). Cambridge: Bradford.
Zurück zum Zitat Sargent, P. B., Pike, S. H., Nadel, D. B., & Lindstrom, J. M. (1989). Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog. Journal of Neuroscience, 9, 565–573.PubMed Sargent, P. B., Pike, S. H., Nadel, D. B., & Lindstrom, J. M. (1989). Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog. Journal of Neuroscience, 9, 565–573.PubMed
Zurück zum Zitat Schnitzler, A., & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6, 285–296.CrossRefPubMed Schnitzler, A., & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6, 285–296.CrossRefPubMed
Zurück zum Zitat Sereno, M. I., & Ulinski, P. S. (1987). Caudal topographic nucleus isthmi and the rostral nontopographic nucleus isthmi in the turtle, Pseudemys scripta. Journal of Comparative Neurology, 261, 319–346.CrossRefPubMed Sereno, M. I., & Ulinski, P. S. (1987). Caudal topographic nucleus isthmi and the rostral nontopographic nucleus isthmi in the turtle, Pseudemys scripta. Journal of Comparative Neurology, 261, 319–346.CrossRefPubMed
Zurück zum Zitat Sherk, H. (1979). A comparison of visual-response properties in cat’s parabigeminal nucleus and superior colliculus. Journal of Neurophysiology, 42, 1640–1655.PubMed Sherk, H. (1979). A comparison of visual-response properties in cat’s parabigeminal nucleus and superior colliculus. Journal of Neurophysiology, 42, 1640–1655.PubMed
Zurück zum Zitat Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neurosciences, 24, 122–126.CrossRefPubMed Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neurosciences, 24, 122–126.CrossRefPubMed
Zurück zum Zitat Sillito, A. M., & Jones, H. E. (2002). Corticothalamic interactions in the transfer of visual information. The Philosophical Transactions of the Royal Society B, 357, 1739–1752.CrossRef Sillito, A. M., & Jones, H. E. (2002). Corticothalamic interactions in the transfer of visual information. The Philosophical Transactions of the Royal Society B, 357, 1739–1752.CrossRef
Zurück zum Zitat Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W., & Feldman, J. L. (1991). Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science, 254, 726–729.CrossRefPubMed Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W., & Feldman, J. L. (1991). Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science, 254, 726–729.CrossRefPubMed
Zurück zum Zitat Sorenson, E. M., Parkinson, D., Dahl, J. L., & Chiappinelli, V. A. (1989). Immunohistochemical localization of choline acetyltransferase in the chicken mesencephalon. Journal of Comparative Neurology, 281, 641–657.CrossRefPubMed Sorenson, E. M., Parkinson, D., Dahl, J. L., & Chiappinelli, V. A. (1989). Immunohistochemical localization of choline acetyltransferase in the chicken mesencephalon. Journal of Comparative Neurology, 281, 641–657.CrossRefPubMed
Zurück zum Zitat Storm, J. F. (1990). Potassium currents in hippocampal pyramidal cells. Progress in Brain Research, 83, 161–187.CrossRefPubMed Storm, J. F. (1990). Potassium currents in hippocampal pyramidal cells. Progress in Brain Research, 83, 161–187.CrossRefPubMed
Zurück zum Zitat Tabak, J., & Rinzel, J. (2005). Bursting in excitatory neural networks. In: S. Coombes, & P. C. Bressloff (Eds.), Bursting: The genesis of rhythm in the nervous system. Hackensack World Scientific, pp. 273–301. Tabak, J., & Rinzel, J. (2005). Bursting in excitatory neural networks. In: S. Coombes, & P. C. Bressloff (Eds.), Bursting: The genesis of rhythm in the nervous system. Hackensack World Scientific, pp. 273–301.
Zurück zum Zitat Tabak, J., Senn, W., O’Donovan, M. J., & Rinzel, J. (2000). Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. Journal of Neuroscience, 20, 3041–3056.PubMed Tabak, J., Senn, W., O’Donovan, M. J., & Rinzel, J. (2000). Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. Journal of Neuroscience, 20, 3041–3056.PubMed
Zurück zum Zitat Traub, R. D., Bibbig, A., LeBeau, F. E. N., Buhl, E. H., & Whittington, M. A. (2004). Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annual Review of Neuroscience, 27, 247–248.CrossRefPubMed Traub, R. D., Bibbig, A., LeBeau, F. E. N., Buhl, E. H., & Whittington, M. A. (2004). Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annual Review of Neuroscience, 27, 247–248.CrossRefPubMed
Zurück zum Zitat Van Vreeswijk, C., & Hansel, D. (2001). Patterns of synchrony in neural networks with spike adaptation. Neural Computation, 13, 959–992.CrossRefPubMed Van Vreeswijk, C., & Hansel, D. (2001). Patterns of synchrony in neural networks with spike adaptation. Neural Computation, 13, 959–992.CrossRefPubMed
Zurück zum Zitat Vladimirski, B. B., Tabak, J., O’Donovan, M. J., & Rinzel, J. (2008). Episodic activity in a heterogeneous excitatory network, from spiking neurons to mean field. Journal of Computational Neuroscience, 25, 39–63.CrossRefPubMed Vladimirski, B. B., Tabak, J., O’Donovan, M. J., & Rinzel, J. (2008). Episodic activity in a heterogeneous excitatory network, from spiking neurons to mean field. Journal of Computational Neuroscience, 25, 39–63.CrossRefPubMed
Zurück zum Zitat Wang, X. J. (1994). Multiple dynamic modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking. Neuroscience, 59, 21–31.CrossRefPubMed Wang, X. J. (1994). Multiple dynamic modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking. Neuroscience, 59, 21–31.CrossRefPubMed
Zurück zum Zitat Wang, S. R. (2003). The nucleus isthmi and dual modulation of the receptive field of tectal neurons in non-mammals. Brain Research Reviews, 41, 13–25.CrossRefPubMed Wang, S. R. (2003). The nucleus isthmi and dual modulation of the receptive field of tectal neurons in non-mammals. Brain Research Reviews, 41, 13–25.CrossRefPubMed
Zurück zum Zitat Wang, X. J., & Rinzel, J. (2003). Oscillatory and bursting properties of neurons. In: M. A. Arbib (ed.), Handbook of brain theory and neural networks. MIT, pp. 835–840. Wang, X. J., & Rinzel, J. (2003). Oscillatory and bursting properties of neurons. In: M. A. Arbib (ed.), Handbook of brain theory and neural networks. MIT, pp. 835–840.
Zurück zum Zitat Wang, Y., Major, D. E., & Karten, H. J. (2004). Morphology and connections of nucleus isthmi pars magnocellularis in chicks (gallus gallus). Journal of Comparative Neurology, 469, 275–297.CrossRefPubMed Wang, Y., Major, D. E., & Karten, H. J. (2004). Morphology and connections of nucleus isthmi pars magnocellularis in chicks (gallus gallus). Journal of Comparative Neurology, 469, 275–297.CrossRefPubMed
Zurück zum Zitat Wang, Y., Luksch, H., Brecha, N. C., & Karten, H. J. (2006). Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (gallus gallus): a possible substrate for synchronizing tectal channels. Journal Comparative Neurology, 494, 7–35.CrossRef Wang, Y., Luksch, H., Brecha, N. C., & Karten, H. J. (2006). Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (gallus gallus): a possible substrate for synchronizing tectal channels. Journal Comparative Neurology, 494, 7–35.CrossRef
Zurück zum Zitat Wolfart, J., Debay, D., LeMasson, G., Destexhe, A., & Bal, T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature Neuroscience, 8, 1760–1767.CrossRefPubMed Wolfart, J., Debay, D., LeMasson, G., Destexhe, A., & Bal, T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature Neuroscience, 8, 1760–1767.CrossRefPubMed
Zurück zum Zitat Zhan, X. J., Cox, C., Rinzel, J., & Sherman, S. M. (1999). Current clamp and modeling studies of low threshold calcium spikes in cells of the cat’s lateral geniculate nucleus. Journal of Neurophysiology, 81, 2360–2373.PubMed Zhan, X. J., Cox, C., Rinzel, J., & Sherman, S. M. (1999). Current clamp and modeling studies of low threshold calcium spikes in cells of the cat’s lateral geniculate nucleus. Journal of Neurophysiology, 81, 2360–2373.PubMed
Metadaten
Titel
Generating oscillatory bursts from a network of regular spiking neurons without inhibition
verfasst von
Jing Shao
Dihui Lai
Ulrike Meyer
Harald Luksch
Ralf Wessel
Publikationsdatum
01.12.2009
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2009
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-009-0171-5

Weitere Artikel der Ausgabe 3/2009

Journal of Computational Neuroscience 3/2009 Zur Ausgabe