Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2011

01.04.2011

A single spiking neuron that can represent interval timing: analysis, plasticity and multi-stability

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ability to represent interval timing is crucial for many common behaviors, such as knowing whether to stop when the light turns from green to yellow. Neural representations of interval timing have been reported in the rat primary visual cortex and we have previously presented a computational framework describing how they can be learned by a network of neurons. Recent experimental and theoretical results in entorhinal cortex have shown that single neurons can exhibit persistent activity, previously thought to be generated by a network of neurons. Motivated by these single neuron results, we propose a single spiking neuron model that can learn to compute and represent interval timing. We show that a simple model, reduced analytically to a single dynamical equation, captures the average behavior of the complete high dimensional spiking model very well. Variants of this model can be used to produce bi-stable or multi-stable persistent activity. We also propose a plasticity rule by which this model can learn to represent different intervals and different levels of persistent activity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Barbieri, F., & Brunel, N. (2008). Can attractor network models account for the statistics of firing during persistent activity in prefrontal cortex? Frontiers in Neuroscience, 2, 114–122.PubMedCrossRef Barbieri, F., & Brunel, N. (2008). Can attractor network models account for the statistics of firing during persistent activity in prefrontal cortex? Frontiers in Neuroscience, 2, 114–122.PubMedCrossRef
Zurück zum Zitat Buhusi, C., & Meck, W. (2002). Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behavioral Neuroscience, 116, 291–297.PubMedCrossRef Buhusi, C., & Meck, W. (2002). Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behavioral Neuroscience, 116, 291–297.PubMedCrossRef
Zurück zum Zitat Compte, A., Constantinidis, C., Tegner, J., Raghavachari, S., Chafee, M., Goldman-Rakic, P., et al. (2003). Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. Journal of Neurophysiology, 90, 3441–3454.PubMedCrossRef Compte, A., Constantinidis, C., Tegner, J., Raghavachari, S., Chafee, M., Goldman-Rakic, P., et al. (2003). Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. Journal of Neurophysiology, 90, 3441–3454.PubMedCrossRef
Zurück zum Zitat Daoudal, G., & Debanne, D. (2003). Long-term plasticity of intrinsic excitability: Learning rules and mechanisms. Learning and Memory, 10(6), 456–465.PubMedCrossRef Daoudal, G., & Debanne, D. (2003). Long-term plasticity of intrinsic excitability: Learning rules and mechanisms. Learning and Memory, 10(6), 456–465.PubMedCrossRef
Zurück zum Zitat Durstewitz, D. (2003). Self-organizing neural integrator predicts interval times through climbing activity. Journal of Neuroscience, 23, 5342–5353.PubMed Durstewitz, D. (2003). Self-organizing neural integrator predicts interval times through climbing activity. Journal of Neuroscience, 23, 5342–5353.PubMed
Zurück zum Zitat Egorov, A., Hamam, B., Fransén, E., Hasselmo, M., & Alonso, A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420, 173–178.PubMedCrossRef Egorov, A., Hamam, B., Fransén, E., Hasselmo, M., & Alonso, A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420, 173–178.PubMedCrossRef
Zurück zum Zitat Fransen, E., Alonso, A., & Hasselmo, M. E. (2002). Simulations of the role of the muscarinic-activated calcium-sensitive nonspecific cation current incm in entorhinal neuronal activity during delayed matching tasks. Journal of Neuroscience, 22, 1081–1097.PubMed Fransen, E., Alonso, A., & Hasselmo, M. E. (2002). Simulations of the role of the muscarinic-activated calcium-sensitive nonspecific cation current incm in entorhinal neuronal activity during delayed matching tasks. Journal of Neuroscience, 22, 1081–1097.PubMed
Zurück zum Zitat Fransen, E., Tahvildari, B., Egorov, A., Hasselmo, M., & Alonso, A. A. (2006). Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron, 49, 735–746.PubMedCrossRef Fransen, E., Tahvildari, B., Egorov, A., Hasselmo, M., & Alonso, A. A. (2006). Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron, 49, 735–746.PubMedCrossRef
Zurück zum Zitat Gavornik, J., & Shouval, H. (2010). A network of spiking neurons that can represent interval timing: Mean field analysis. Journal of Computational Neuroscience. doi:10.1007/s10827-010-0275-y. Gavornik, J., & Shouval, H. (2010). A network of spiking neurons that can represent interval timing: Mean field analysis. Journal of Computational Neuroscience. doi:10.​1007/​s10827-010-0275-y.
Zurück zum Zitat Gavornik, J. P., Shuler, M. G., Loewenstein, Y., Bear, M. F., & Shouval, H. Z. (2009). Learning reward timing in cortex through reward dependent expression of synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6826–6831.PubMedCrossRef Gavornik, J. P., Shuler, M. G., Loewenstein, Y., Bear, M. F., & Shouval, H. Z. (2009). Learning reward timing in cortex through reward dependent expression of synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6826–6831.PubMedCrossRef
Zurück zum Zitat Gross, S., Guzma’n, G., Wissenbach, U., Philipp, S., Zhu, M. X., Bruns, D., et al. (2009). TRPC5 is a Ca2-activated channel functionally coupled to Ca2-selective ion channels. The Journal of Biological Chemistry, 284, 34423–34432.PubMedCrossRef Gross, S., Guzma’n, G., Wissenbach, U., Philipp, S., Zhu, M. X., Bruns, D., et al. (2009). TRPC5 is a Ca2-activated channel functionally coupled to Ca2-selective ion channels. The Journal of Biological Chemistry, 284, 34423–34432.PubMedCrossRef
Zurück zum Zitat Hernandez-Lopez, S., Tkatch, T., Perez-Garci, E., Galarraga, E., Bargas, J., Hamm, H., et al. (2000). D2 dopamine receptors in striatal medium spiny neurons reduce l-type ca2+ currents and excitability via a novel plc[beta]1-ip3-calcineurin-signaling cascade. Journal of Neuroscience, 20, 8987–8995.PubMed Hernandez-Lopez, S., Tkatch, T., Perez-Garci, E., Galarraga, E., Bargas, J., Hamm, H., et al. (2000). D2 dopamine receptors in striatal medium spiny neurons reduce l-type ca2+ currents and excitability via a novel plc[beta]1-ip3-calcineurin-signaling cascade. Journal of Neuroscience, 20, 8987–8995.PubMed
Zurück zum Zitat Johnston, D., & Wu, S.-S. (1994). Foundations of cellular neurophysiology. MIT Press. Johnston, D., & Wu, S.-S. (1994). Foundations of cellular neurophysiology. MIT Press.
Zurück zum Zitat Loewenstein, Y., & Sompolinsky, H. (2003). Temporal integration by calcium dynamics in a model neuron. Nature Neuroscience, 6, 961–967.PubMedCrossRef Loewenstein, Y., & Sompolinsky, H. (2003). Temporal integration by calcium dynamics in a model neuron. Nature Neuroscience, 6, 961–967.PubMedCrossRef
Zurück zum Zitat Matell, M., Bateson, M., & Meck, W. (2006). Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-inducedhorizontal shifts in peak-interval timing functions. Psychopharmacology, 188, 201–212.PubMedCrossRef Matell, M., Bateson, M., & Meck, W. (2006). Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-inducedhorizontal shifts in peak-interval timing functions. Psychopharmacology, 188, 201–212.PubMedCrossRef
Zurück zum Zitat Mauk, M., & Buonomano, D. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307–340.PubMedCrossRef Mauk, M., & Buonomano, D. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307–340.PubMedCrossRef
Zurück zum Zitat Meck, W. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3, 227–242.PubMedCrossRef Meck, W. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3, 227–242.PubMedCrossRef
Zurück zum Zitat Saar, D., & Barkai, E. (2003). Long-term modifications in intrinsic neuronal properties and rule learning in rats. European Journal of Neuroscience, 17, 2727–2734.PubMedCrossRef Saar, D., & Barkai, E. (2003). Long-term modifications in intrinsic neuronal properties and rule learning in rats. European Journal of Neuroscience, 17, 2727–2734.PubMedCrossRef
Zurück zum Zitat Shalinsky, M., Magistretti, J., Ma, L., & Alonso, A. (2002). Muscarinic activation of a cation current and associated current noise in entorhinal-cortex layer-ii neurons. Journal of Neurophysiology, 88, 1197–1211.PubMed Shalinsky, M., Magistretti, J., Ma, L., & Alonso, A. (2002). Muscarinic activation of a cation current and associated current noise in entorhinal-cortex layer-ii neurons. Journal of Neurophysiology, 88, 1197–1211.PubMed
Zurück zum Zitat Shuler, M., & Bear, M. (2006). Reward timing in the primary visual cortex. Science, 311, 1606–1609.PubMedCrossRef Shuler, M., & Bear, M. (2006). Reward timing in the primary visual cortex. Science, 311, 1606–1609.PubMedCrossRef
Zurück zum Zitat Staddon, J., Higa, J., & Chelaru, I. (1999). Time, trace, memory. Journal of the Experimental Analysis of Behavior, 71, 293–301.PubMedCrossRef Staddon, J., Higa, J., & Chelaru, I. (1999). Time, trace, memory. Journal of the Experimental Analysis of Behavior, 71, 293–301.PubMedCrossRef
Zurück zum Zitat Surmeier, D. J., Bargas, J., Hemmings, H. J., Nairn, A., & Greengard, P. (1995). Modulation of calcium currents by a d1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron, 14, 385–397.PubMedCrossRef Surmeier, D. J., Bargas, J., Hemmings, H. J., Nairn, A., & Greengard, P. (1995). Modulation of calcium currents by a d1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron, 14, 385–397.PubMedCrossRef
Zurück zum Zitat Wang, X. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences, 24, 455–463.PubMedCrossRef Wang, X. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences, 24, 455–463.PubMedCrossRef
Metadaten
Titel
A single spiking neuron that can represent interval timing: analysis, plasticity and multi-stability
Publikationsdatum
01.04.2011
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2011
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0273-0

Weitere Artikel der Ausgabe 2/2011

Journal of Computational Neuroscience 2/2011 Zur Ausgabe