Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2011

01.06.2011

Capacity analysis in multi-state synaptic models: a retrieval probability perspective

verfasst von: Yibi Huang, Yali Amit

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We define the memory capacity of networks of binary neurons with finite-state synapses in terms of retrieval probabilities of learned patterns under standard asynchronous dynamics with a predetermined threshold. The threshold is set to control the proportion of non-selective neurons that fire. An optimal inhibition level is chosen to stabilize network behavior. For any local learning rule we provide a computationally efficient and highly accurate approximation to the retrieval probability of a pattern as a function of its age. The method is applied to the sequential models (Fusi and Abbott, Nat Neurosci 10:485–493, 2007) and meta-plasticity models (Fusi et al., Neuron 45(4):599–611, 2005; Leibold and Kempter, Cereb Cortex 18:67–77, 2008). We show that as the number of synaptic states increases, the capacity, as defined here, either plateaus or decreases. In the few cases where multi-state models exceed the capacity of binary synapse models the improvement is small.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The fraction of non-selective neurons above the threshold is not specified in the criterion since it has been controlled in the threshold selection. Moreover, because of the strong inhibition, there cannot be many non-selective neurons above threshold throughout the dynamics.
 
2
The amount of allowable non-selective neurons above the threshold is not specified in the criterion since it has been controlled in the threshold selection.
 
Literatur
Zurück zum Zitat Amit, D. J., & Brunel, N. (1997a). Dynamics of recurrent network of spiking neurons before and following learning. Network, 8, 373–404.CrossRef Amit, D. J., & Brunel, N. (1997a). Dynamics of recurrent network of spiking neurons before and following learning. Network, 8, 373–404.CrossRef
Zurück zum Zitat Amit, D. J., & Brunel, N. (1997b). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex, 7, 237–252.PubMedCrossRef Amit, D. J., & Brunel, N. (1997b). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex, 7, 237–252.PubMedCrossRef
Zurück zum Zitat Amit, D. J., & Fusi, S. (1994). Learning in neural networks with material synapses. Neural Computation, 6, 957–982.CrossRef Amit, D. J., & Fusi, S. (1994). Learning in neural networks with material synapses. Neural Computation, 6, 957–982.CrossRef
Zurück zum Zitat Amit, D. J., & Mongillo, G. (2003). Selective delay activity in the cortex: Phenomena and interpretation. Cerebral Cortex, 13, 1139–1150.PubMedCrossRef Amit, D. J., & Mongillo, G. (2003). Selective delay activity in the cortex: Phenomena and interpretation. Cerebral Cortex, 13, 1139–1150.PubMedCrossRef
Zurück zum Zitat Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21(10), 1133–1145.PubMed Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21(10), 1133–1145.PubMed
Zurück zum Zitat Barnes, C. A., McNaughton, B. L., Mizumori, S. J., Leonard, B. W., & Lin, L. H. (1990). Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Progress in Brain Research, 83, 287–300.PubMedCrossRef Barnes, C. A., McNaughton, B. L., Mizumori, S. J., Leonard, B. W., & Lin, L. H. (1990). Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Progress in Brain Research, 83, 287–300.PubMedCrossRef
Zurück zum Zitat Barret, A. B., & van Rossum, M. C. (2008). Optimal learning rules for discrete synapses. PLoS Computational Biology, 4, 1–7.CrossRef Barret, A. B., & van Rossum, M. C. (2008). Optimal learning rules for discrete synapses. PLoS Computational Biology, 4, 1–7.CrossRef
Zurück zum Zitat Ben Dayan Rubin, D. D., & Fusi, S. (2007). Long memory lifetimes require complex synapses and limited sparseness. Frontiers in Computational Neuroscience, 1, 1–14.CrossRef Ben Dayan Rubin, D. D., & Fusi, S. (2007). Long memory lifetimes require complex synapses and limited sparseness. Frontiers in Computational Neuroscience, 1, 1–14.CrossRef
Zurück zum Zitat Brunel, N. (2003). Dynamics and plasticity of stimulus-selective persistent activity in cortical network models. Cerebral Cortex, 13, 1151–1161.PubMedCrossRef Brunel, N. (2003). Dynamics and plasticity of stimulus-selective persistent activity in cortical network models. Cerebral Cortex, 13, 1151–1161.PubMedCrossRef
Zurück zum Zitat Curti, E., Mongillo, G., La Camera, G., & Amit, D. J. (2004). Mean-field and capacity in realistic networks of spiking neurons storing sparsely coded random memories. Neural Computation, 16, 2597–2637.PubMedCrossRef Curti, E., Mongillo, G., La Camera, G., & Amit, D. J. (2004). Mean-field and capacity in realistic networks of spiking neurons storing sparsely coded random memories. Neural Computation, 16, 2597–2637.PubMedCrossRef
Zurück zum Zitat Fusi, S., & Abbott, L. F. (2007). Limits on the memory storage capacity of bounded synapses. Nature Neuroscience, 10, 485–493.PubMed Fusi, S., & Abbott, L. F. (2007). Limits on the memory storage capacity of bounded synapses. Nature Neuroscience, 10, 485–493.PubMed
Zurück zum Zitat Fuster, J. (1995). Memory in the cerebral cortex: An empirical approach to neural networks in the human and nonhuman primate. Cambridge, MA: MIT Press. Fuster, J. (1995). Memory in the cerebral cortex: An empirical approach to neural networks in the human and nonhuman primate. Cambridge, MA: MIT Press.
Zurück zum Zitat Jung, M. W., & McNaughton, B. L. (1993). Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus, 3(0), 165–182.PubMedCrossRef Jung, M. W., & McNaughton, B. L. (1993). Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus, 3(0), 165–182.PubMedCrossRef
Zurück zum Zitat Leibold, C., & Kempter, R. (2008). Sparseness constrains the prolongation of memory lifetime via synaptic metaplasticity. Cerebral Cortex 18, 67–77.PubMedCrossRef Leibold, C., & Kempter, R. (2008). Sparseness constrains the prolongation of memory lifetime via synaptic metaplasticity. Cerebral Cortex 18, 67–77.PubMedCrossRef
Zurück zum Zitat Miyashita, Y., & Hayashi, T. (2000). Neural representation of visual objects: Encoding and top-down activation. Current Opinion in Neurobiology, 10(2), 187–194.PubMedCrossRef Miyashita, Y., & Hayashi, T. (2000). Neural representation of visual objects: Encoding and top-down activation. Current Opinion in Neurobiology, 10(2), 187–194.PubMedCrossRef
Zurück zum Zitat Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435, 1102–1107.PubMedCrossRef Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435, 1102–1107.PubMedCrossRef
Zurück zum Zitat Robertson, T., Wright, F. T., & Dykstra, R. L. (1988). Order restricted statistical inference. Wiley. Robertson, T., Wright, F. T., & Dykstra, R. L. (1988). Order restricted statistical inference. Wiley.
Zurück zum Zitat Rolls, E. T., & Tovee, M. J. (1995). Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. Journal of Physiology, 73(2), 713–726. Rolls, E. T., & Tovee, M. J. (1995). Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. Journal of Physiology, 73(2), 713–726.
Zurück zum Zitat Romani, S., Amit, D., & Amit, Y. (2008). Optimizing one-shot learning with binary synapses. Neural Computation, 20, 1928–1950.PubMedCrossRef Romani, S., Amit, D., & Amit, Y. (2008). Optimizing one-shot learning with binary synapses. Neural Computation, 20, 1928–1950.PubMedCrossRef
Zurück zum Zitat Sato, T., Uchida, G., & Tanifuji, M. (2007). The nature of neuronal clustering in inferotemporal cortex of macaque monkey revealed by optical imaging and extracellular recording. In 34th Ann. meet. of soc. for neuroscience. San Diego, USA. Sato, T., Uchida, G., & Tanifuji, M. (2007). The nature of neuronal clustering in inferotemporal cortex of macaque monkey revealed by optical imaging and extracellular recording. In 34th Ann. meet. of soc. for neuroscience. San Diego, USA.
Zurück zum Zitat Willshaw, D., Buneman, O. P., & Longuet-Higgins, H. (1969). Non-holographic associative memory. Nature (London), 222, 960–962.CrossRef Willshaw, D., Buneman, O. P., & Longuet-Higgins, H. (1969). Non-holographic associative memory. Nature (London), 222, 960–962.CrossRef
Metadaten
Titel
Capacity analysis in multi-state synaptic models: a retrieval probability perspective
verfasst von
Yibi Huang
Yali Amit
Publikationsdatum
01.06.2011
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2011
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0287-7

Weitere Artikel der Ausgabe 3/2011

Journal of Computational Neuroscience 3/2011 Zur Ausgabe