Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2011

01.08.2011

A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells

verfasst von: John L. Baker, Tamara Perez-Rosello, Michele Migliore, Germán Barrionuevo, Giorgio A. Ascoli

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Despite the central position of CA3 pyramidal cells in the hippocampal circuit, the experimental investigation of their synaptic properties has been limited. Recent slice experiments from adult rats characterized AMPA and NMDA receptor unitary synaptic responses in CA3b pyramidal cells. Here, excitatory synaptic activation is modeled to infer biophysical parameters, aid analysis interpretation, explore mechanisms, and formulate predictions by contrasting simulated somatic recordings with experimental data. Reconstructed CA3b pyramidal cells from the public repository NeuroMorpho.Org were used to allow for cell-specific morphological variation. For each cell, synaptic responses were simulated for perforant pathway and associational/commissural synapses. Means and variability for peak amplitude, time-to-peak, and half-height width in these responses were compared with equivalent statistics from experimental recordings. Synaptic responses mediated by AMPA receptors are best fit with properties typical of previously characterized glutamatergic receptors where perforant path synapses have conductances twice that of associational/commissural synapses (0.9 vs. 0.5 nS) and more rapid peak times (1.0 vs. 3.3 ms). Reanalysis of passive-cell experimental traces using the model shows no evidence of a CA1-like increase of associational/commissural AMPA receptor conductance with increasing distance from the soma. Synaptic responses mediated by NMDA receptors are best fit with rapid kinetics, suggestive of NR2A subunits as expected in mature animals. Predictions were made for passive-cell current clamp recordings, combined AMPA and NMDA receptor responses, and local dendritic depolarization in response to unitary stimulations. Models of synaptic responses in active cells suggest altered axial resistivity and the presence of synaptically activated potassium channels in spines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amaral, D. G., Ishizuka, N., & Claiborne, B. (1990). Neurons, numbers and the hippocampal network. Progress in Brain Research, 83, 1–11.PubMedCrossRef Amaral, D. G., Ishizuka, N., & Claiborne, B. (1990). Neurons, numbers and the hippocampal network. Progress in Brain Research, 83, 1–11.PubMedCrossRef
Zurück zum Zitat Amaral, D. G., & Witter, M. P. (1989). The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience, 31, 571–591.PubMedCrossRef Amaral, D. G., & Witter, M. P. (1989). The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience, 31, 571–591.PubMedCrossRef
Zurück zum Zitat Andrásfalvy, B. K., & Magee, J. C. (2001). Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 21, 9151–9159.PubMed Andrásfalvy, B. K., & Magee, J. C. (2001). Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 21, 9151–9159.PubMed
Zurück zum Zitat Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. Journal of Neuroscience, 27, 9247–9251.PubMedCrossRef Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. Journal of Neuroscience, 27, 9247–9251.PubMedCrossRef
Zurück zum Zitat Baker, J. L., & Olds, J. L. (2007). Theta phase precession emerges from a hybrid computational model of a CA3 place cell. Cognitive Neurodynamics, 1, 237–248.PubMedCrossRef Baker, J. L., & Olds, J. L. (2007). Theta phase precession emerges from a hybrid computational model of a CA3 place cell. Cognitive Neurodynamics, 1, 237–248.PubMedCrossRef
Zurück zum Zitat Bekkers, J. M., & Stevens, C. F. (1996). Cable properties of cultured hippocampal neurons determined from sucrose-evoked miniature EPSCs. Journal of Neurophysiology, 75, 1250–1255.PubMed Bekkers, J. M., & Stevens, C. F. (1996). Cable properties of cultured hippocampal neurons determined from sucrose-evoked miniature EPSCs. Journal of Neurophysiology, 75, 1250–1255.PubMed
Zurück zum Zitat Berzhanskaya, J., Urban, N. N., & Barrionuevo, G. (1998). Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3. Journal of Neurophysiology, 79, 2111–2118.PubMed Berzhanskaya, J., Urban, N. N., & Barrionuevo, G. (1998). Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3. Journal of Neurophysiology, 79, 2111–2118.PubMed
Zurück zum Zitat Bloodgood, B. L., & Sabatini, B. L. (2007). Nonlinear regulation of unitary synaptic signals by CaV2.3 voltage-sensitive calcium channels located in dendritic spines. Neuron, 53, 249–260.PubMedCrossRef Bloodgood, B. L., & Sabatini, B. L. (2007). Nonlinear regulation of unitary synaptic signals by CaV2.3 voltage-sensitive calcium channels located in dendritic spines. Neuron, 53, 249–260.PubMedCrossRef
Zurück zum Zitat Cais, O., Sedlacek, M., Horak, M., Dittert, I., & Vyklicky, L., Jr. (2008). Temperature dependence of NR1/NR2B NMDA receptor channels. Neuroscience, 151, 428–438.PubMedCrossRef Cais, O., Sedlacek, M., Horak, M., Dittert, I., & Vyklicky, L., Jr. (2008). Temperature dependence of NR1/NR2B NMDA receptor channels. Neuroscience, 151, 428–438.PubMedCrossRef
Zurück zum Zitat Carnevale, N. T., & Hines, M. L. (2005). The NEURON book. New York: Cambridge University Press. Carnevale, N. T., & Hines, M. L. (2005). The NEURON book. New York: Cambridge University Press.
Zurück zum Zitat Chen, N., Ren, J., Raymond, L. A., & Murphy, T. H. (2001). Changes in agonist concentration dependence that are a function of duration of exposure suggest N-methyl-d-aspartate receptor nonsaturation during synaptic stimulation. Molecular Pharmacology, 59, 212–219.PubMed Chen, N., Ren, J., Raymond, L. A., & Murphy, T. H. (2001). Changes in agonist concentration dependence that are a function of duration of exposure suggest N-methyl-d-aspartate receptor nonsaturation during synaptic stimulation. Molecular Pharmacology, 59, 212–219.PubMed
Zurück zum Zitat Colquhoun, D., Jonas, P., & Sakmann, B. (1992). Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. Journal de Physiologie, 458, 261–287. Colquhoun, D., Jonas, P., & Sakmann, B. (1992). Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. Journal de Physiologie, 458, 261–287.
Zurück zum Zitat Cull-Candy, S., Brickley, S., & Farrant, M. (2001). NMDA receptor subunits: diversity, development and disease. Current Opinion in Neurobiology, 11, 327–335.PubMedCrossRef Cull-Candy, S., Brickley, S., & Farrant, M. (2001). NMDA receptor subunits: diversity, development and disease. Current Opinion in Neurobiology, 11, 327–335.PubMedCrossRef
Zurück zum Zitat Dalby, N. O., & Mody, I. (2003). Activation of NMDA receptors in rat dentate gyrus granule cells by spontaneous and evoked transmitter release. Journal of Neurophysiology, 90, 786–797.PubMedCrossRef Dalby, N. O., & Mody, I. (2003). Activation of NMDA receptors in rat dentate gyrus granule cells by spontaneous and evoked transmitter release. Journal of Neurophysiology, 90, 786–797.PubMedCrossRef
Zurück zum Zitat Dayan, P., & Abbott, L. (2001). Theoretical neuroscience. Cambridge: MIT. Dayan, P., & Abbott, L. (2001). Theoretical neuroscience. Cambridge: MIT.
Zurück zum Zitat Debanne, D., Guérineau, N. C., Gähwiler, B. H., & Thompson, S. M. (1995). Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. Journal of Neurophysiology, 73, 1282–1294.PubMed Debanne, D., Guérineau, N. C., Gähwiler, B. H., & Thompson, S. M. (1995). Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. Journal of Neurophysiology, 73, 1282–1294.PubMed
Zurück zum Zitat Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. Journal de Physiologie, 507, 237–247.CrossRef Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. Journal de Physiologie, 507, 237–247.CrossRef
Zurück zum Zitat Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1999). Heterogeneity of synaptic plasticity at unitary CA3-CA1 and CA3-CA3 connections in rat hippocampal slice cultures. The Journal of Neuroscience, 19, 10664–10671.PubMed Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1999). Heterogeneity of synaptic plasticity at unitary CA3-CA1 and CA3-CA3 connections in rat hippocampal slice cultures. The Journal of Neuroscience, 19, 10664–10671.PubMed
Zurück zum Zitat Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (2nd ed., pp. 1–15). Cambridge: MIT. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (2nd ed., pp. 1–15). Cambridge: MIT.
Zurück zum Zitat Diamond, J. S. (2001). Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. The Journal of Neuroscience, 21, 8328–8338.PubMed Diamond, J. S. (2001). Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. The Journal of Neuroscience, 21, 8328–8338.PubMed
Zurück zum Zitat Do, V. H., Martinez, C. O., Martinez, J. L., Jr., & Derrick, B. E. (2002). Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo. Journal of Neurophysiology, 87, 669–678.PubMed Do, V. H., Martinez, C. O., Martinez, J. L., Jr., & Derrick, B. E. (2002). Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo. Journal of Neurophysiology, 87, 669–678.PubMed
Zurück zum Zitat Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. A., & Traynelis, S. F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. Journal de Physiologie, 563, 345–358.CrossRef Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. A., & Traynelis, S. F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. Journal de Physiologie, 563, 345–358.CrossRef
Zurück zum Zitat Feldmeyer, D., Lübke, J., Silver, R. A., & Sakmann, B. (2002). Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. Journal de Physiologie, 538, 803–822.CrossRef Feldmeyer, D., Lübke, J., Silver, R. A., & Sakmann, B. (2002). Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. Journal de Physiologie, 538, 803–822.CrossRef
Zurück zum Zitat Geiger, J. R., Lübke, J., Roth, A., Frotscher, M., & Jonas, P. (1997). Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron, 18, 1009–1023.PubMedCrossRef Geiger, J. R., Lübke, J., Roth, A., Frotscher, M., & Jonas, P. (1997). Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron, 18, 1009–1023.PubMedCrossRef
Zurück zum Zitat Gentet, L. J., Stuart, G. J., & Clements, J. D. (2000). Direct measurement of specific membrane capacitance in neurons. Biophysical Journal, 79, 314–320.PubMedCrossRef Gentet, L. J., Stuart, G. J., & Clements, J. D. (2000). Direct measurement of specific membrane capacitance in neurons. Biophysical Journal, 79, 314–320.PubMedCrossRef
Zurück zum Zitat Golding, N. L., Mickus, T. J., Katz, Y., Kath, W. L., & Spruston, N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. Journal de Physiologie, 568, 69–82.CrossRef Golding, N. L., Mickus, T. J., Katz, Y., Kath, W. L., & Spruston, N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. Journal de Physiologie, 568, 69–82.CrossRef
Zurück zum Zitat Hemond, P., Epstein, D., Boley, A., Migliore, M., Ascoli, G. A., & Jaffe, D. B. (2008). Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus, 18, 411–424.PubMedCrossRef Hemond, P., Epstein, D., Boley, A., Migliore, M., Ascoli, G. A., & Jaffe, D. B. (2008). Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus, 18, 411–424.PubMedCrossRef
Zurück zum Zitat Hemond, P., Migliore, M., Ascoli, G. A., & Jaffe, D. B. (2009). The membrane response of CA3b pyramidal neurons near rest: heterogeneity of passive properties and the contribution of hyperpolarization-activated currents. Neuroscience, 160, 359–370.PubMedCrossRef Hemond, P., Migliore, M., Ascoli, G. A., & Jaffe, D. B. (2009). The membrane response of CA3b pyramidal neurons near rest: heterogeneity of passive properties and the contribution of hyperpolarization-activated currents. Neuroscience, 160, 359–370.PubMedCrossRef
Zurück zum Zitat Henze, D., Cameron, W. E., & Barrionuevo, G. (1996). Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells. The Journal of Comparative Neurology, 369, 331–344.PubMedCrossRef Henze, D., Cameron, W. E., & Barrionuevo, G. (1996). Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells. The Journal of Comparative Neurology, 369, 331–344.PubMedCrossRef
Zurück zum Zitat Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., & Shepherd, G. M. (2004). ModelDB: a database to support computational neuroscience. Journal of Computational Neuroscience, 17, 7–11.PubMedCrossRef Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., & Shepherd, G. M. (2004). ModelDB: a database to support computational neuroscience. Journal of Computational Neuroscience, 17, 7–11.PubMedCrossRef
Zurück zum Zitat Hjorth-Simonsen, A. (1973). Some intrinsic connections of the hippocampus in the rat: an experimental analysis. The Journal of Comparative Neurology, 147, 145–161.PubMedCrossRef Hjorth-Simonsen, A. (1973). Some intrinsic connections of the hippocampus in the rat: an experimental analysis. The Journal of Comparative Neurology, 147, 145–161.PubMedCrossRef
Zurück zum Zitat Holmes, W. R., Ambros-Ingerson, J., & Grover, L. M. (2006). Fitting experimental data to models that use morphological data from public databases. Journal of Computational Neuroscience, 20, 349–365.PubMedCrossRef Holmes, W. R., Ambros-Ingerson, J., & Grover, L. M. (2006). Fitting experimental data to models that use morphological data from public databases. Journal of Computational Neuroscience, 20, 349–365.PubMedCrossRef
Zurück zum Zitat Iansek, R., & Redman, S. J. (1973). The amplitude, time course, and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. Journal de Physiologie, 234, 665–688. Iansek, R., & Redman, S. J. (1973). The amplitude, time course, and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. Journal de Physiologie, 234, 665–688.
Zurück zum Zitat Ishizuka, N., Cowan, W. M., & Amaral, D. G. (1995). A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. The Journal of Comparative Neurology, 362, 17–45.PubMedCrossRef Ishizuka, N., Cowan, W. M., & Amaral, D. G. (1995). A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. The Journal of Comparative Neurology, 362, 17–45.PubMedCrossRef
Zurück zum Zitat Jaffe, D. B., & Carnevale, N. T. (1999). Passive normalization of synaptic integration influenced by dendritic architecture. Journal of Neurophysiology, 82, 3268–3285.PubMed Jaffe, D. B., & Carnevale, N. T. (1999). Passive normalization of synaptic integration influenced by dendritic architecture. Journal of Neurophysiology, 82, 3268–3285.PubMed
Zurück zum Zitat Jahr, C. E., & Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. The Journal of Neuroscience, 10, 3178–3182.PubMed Jahr, C. E., & Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. The Journal of Neuroscience, 10, 3178–3182.PubMed
Zurück zum Zitat Jonas, P., & Sakmann, B. (1992). Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. Journal de Physiologie, 455, 143–171. Jonas, P., & Sakmann, B. (1992). Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. Journal de Physiologie, 455, 143–171.
Zurück zum Zitat Jonas, P., Major, G., & Sakmann, B. (1993). Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. Journal de Physiologie, 472, 615–663. Jonas, P., Major, G., & Sakmann, B. (1993). Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. Journal de Physiologie, 472, 615–663.
Zurück zum Zitat Káli, S., & Dayan, P. (2000). The involvement of recurrent connections in area CA3 in establishing the properties of place fields: a model. The Journal of Neuroscience, 20, 7463–7477.PubMed Káli, S., & Dayan, P. (2000). The involvement of recurrent connections in area CA3 in establishing the properties of place fields: a model. The Journal of Neuroscience, 20, 7463–7477.PubMed
Zurück zum Zitat Khazipov, R., Ragozzino, D., & Bregestovski, P. (1995). Kinetics and Mg2+ block of N-methyl-d-aspartate receptor channels during postnatal development of hippocampal CA3 pyramidal neurons. Neuroscience, 69, 1057–1065.PubMedCrossRef Khazipov, R., Ragozzino, D., & Bregestovski, P. (1995). Kinetics and Mg2+ block of N-methyl-d-aspartate receptor channels during postnatal development of hippocampal CA3 pyramidal neurons. Neuroscience, 69, 1057–1065.PubMedCrossRef
Zurück zum Zitat Lazarewicz, M. T., Migliore, M., & Ascoli, G. A. (2002). A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. Biosystems, 67, 129–137.PubMedCrossRef Lazarewicz, M. T., Migliore, M., & Ascoli, G. A. (2002). A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. Biosystems, 67, 129–137.PubMedCrossRef
Zurück zum Zitat Magee, J. C., & Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3, 895–903.PubMedCrossRef Magee, J. C., & Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3, 895–903.PubMedCrossRef
Zurück zum Zitat Major, G., Larkman, A. U., Jonas, P., Sakmann, B., & Jack, J. J. B. (1994). Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. The Journal of Neuroscience, 14, 4613–4638.PubMed Major, G., Larkman, A. U., Jonas, P., Sakmann, B., & Jack, J. J. B. (1994). Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. The Journal of Neuroscience, 14, 4613–4638.PubMed
Zurück zum Zitat Marr, D. (1971). Simple memory: a theory for archicortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 262, 23–81.PubMedCrossRef Marr, D. (1971). Simple memory: a theory for archicortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 262, 23–81.PubMedCrossRef
Zurück zum Zitat Matsuda, S., Kobayashi, Y., & Ishizuka, N. (2004). A quantitative analysis of the laminar distribution of synaptic boutons in field CA3 of the rat hippocampus. Neuroscience Research, 49, 241–252.PubMedCrossRef Matsuda, S., Kobayashi, Y., & Ishizuka, N. (2004). A quantitative analysis of the laminar distribution of synaptic boutons in field CA3 of the rat hippocampus. Neuroscience Research, 49, 241–252.PubMedCrossRef
Zurück zum Zitat McMahon, D. B., & Barrionuevo, G. (2002). Short- and long-term plasticity of the perforant path synapse in hippocampal area CA3. Journal of Neurophysiology, 88, 528–533.PubMed McMahon, D. B., & Barrionuevo, G. (2002). Short- and long-term plasticity of the perforant path synapse in hippocampal area CA3. Journal of Neurophysiology, 88, 528–533.PubMed
Zurück zum Zitat Megías, M., Emri, Z., Freund, T. F., & Gulyás, A. I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 102, 527–540.PubMedCrossRef Megías, M., Emri, Z., Freund, T. F., & Gulyás, A. I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 102, 527–540.PubMedCrossRef
Zurück zum Zitat Migliore, M., Hoffman, D. A., Magee, J. C., & Johnston, D. (1999). Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7, 5–15.PubMedCrossRef Migliore, M., Hoffman, D. A., Magee, J. C., & Johnston, D. (1999). Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7, 5–15.PubMedCrossRef
Zurück zum Zitat Miles, R., & Wong, R. K. S. (1986). Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. Journal de Physiologie, 373, 397–418. Miles, R., & Wong, R. K. S. (1986). Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. Journal de Physiologie, 373, 397–418.
Zurück zum Zitat Miller, R. G., Jr. (1998). Beyond ANOVA: Basics of applied statistics. New York: Chapman & Hall/CRC. Miller, R. G., Jr. (1998). Beyond ANOVA: Basics of applied statistics. New York: Chapman & Hall/CRC.
Zurück zum Zitat Nicholson, D., Katz, Y., Trana, R., Kath, W. L., Spruston, N., & Geinisman, Y. (2006). Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron, 50, 431–442.PubMedCrossRef Nicholson, D., Katz, Y., Trana, R., Kath, W. L., Spruston, N., & Geinisman, Y. (2006). Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron, 50, 431–442.PubMedCrossRef
Zurück zum Zitat Palmer, L. M., & Stuart, G. J. (2009). Membrane potential changes in dendritic spines during action potentials and synaptic inputs. The Journal of Neuroscience, 29, 6897–6903.PubMedCrossRef Palmer, L. M., & Stuart, G. J. (2009). Membrane potential changes in dendritic spines during action potentials and synaptic inputs. The Journal of Neuroscience, 29, 6897–6903.PubMedCrossRef
Zurück zum Zitat Perez-Rosello, T., Baker, J. L., Ferrante, M., Iyengar, S., Ascoli, G. A., Barrionuevo, G. (2010). Passive and active shaping of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. Journal of Computational Neuroscience (in press). Perez-Rosello, T., Baker, J. L., Ferrante, M., Iyengar, S., Ascoli, G. A., Barrionuevo, G. (2010). Passive and active shaping of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. Journal of Computational Neuroscience (in press).
Zurück zum Zitat R Development Core Team (2009). R: A language and environment for statistical computing [Online]. R Foundation for Statistical Computing. http://www.R-project.org. Accessed October 19, 2009. R Development Core Team (2009). R: A language and environment for statistical computing [Online]. R Foundation for Statistical Computing. http://​www.​R-project.​org. Accessed October 19, 2009.
Zurück zum Zitat Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G., & Frank, K. (1967). Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. Journal of Neurophysiology, 30, 1169–1193.PubMed Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G., & Frank, K. (1967). Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. Journal of Neurophysiology, 30, 1169–1193.PubMed
Zurück zum Zitat Ramón y Cajal, S. (1995). Histology of the nervous system of man and vertebrates. Translation from the French edition by Swanson N, Swanson LW. New York: Oxford University Press. Ramón y Cajal, S. (1995). Histology of the nervous system of man and vertebrates. Translation from the French edition by Swanson N, Swanson LW. New York: Oxford University Press.
Zurück zum Zitat Roth, A., & Häusser, M. (2001). Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. Journal de Physiologie, 535, 445–472.CrossRef Roth, A., & Häusser, M. (2001). Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. Journal de Physiologie, 535, 445–472.CrossRef
Zurück zum Zitat Samsonovich, A., & McNaughton, B. L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. The Journal of Neuroscience, 17, 5900–5920.PubMed Samsonovich, A., & McNaughton, B. L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. The Journal of Neuroscience, 17, 5900–5920.PubMed
Zurück zum Zitat Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry, 20, 11–21.CrossRef Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry, 20, 11–21.CrossRef
Zurück zum Zitat Smith, M. A., Ellis-Davies, G. C. R., & Magee, J. C. (2003). Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. Journal de Physiologie, 548, 245–258.CrossRef Smith, M. A., Ellis-Davies, G. C. R., & Magee, J. C. (2003). Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. Journal de Physiologie, 548, 245–258.CrossRef
Zurück zum Zitat Spruston, N., & Johnston, D. (1992). Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. Journal of Neurophysiology, 67, 508–529.PubMed Spruston, N., & Johnston, D. (1992). Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. Journal of Neurophysiology, 67, 508–529.PubMed
Zurück zum Zitat Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. Journal de Physiologie, 482, 325–352. Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. Journal de Physiologie, 482, 325–352.
Zurück zum Zitat Svoboda, K., Tank, D. W., & Denk, W. (1996). Direct measurement of coupling between dendritic spines and shafts. Science, 272, 716–719.PubMedCrossRef Svoboda, K., Tank, D. W., & Denk, W. (1996). Direct measurement of coupling between dendritic spines and shafts. Science, 272, 716–719.PubMedCrossRef
Zurück zum Zitat Swanson, L. W., Wyss, J. M., & Cowan, W. M. (1978). An autoradiographic study of the organization of intrahippocampal association pathways in the rat. The Journal of Comparative Neurology, 181, 681–715.PubMedCrossRef Swanson, L. W., Wyss, J. M., & Cowan, W. M. (1978). An autoradiographic study of the organization of intrahippocampal association pathways in the rat. The Journal of Comparative Neurology, 181, 681–715.PubMedCrossRef
Zurück zum Zitat Turner, D. A., Li, X. G., Pyapali, G. K., Ylinen, A., & Buzsáki, G. (1995). Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo. The Journal of Comparative Neurology, 356, 580–594.PubMedCrossRef Turner, D. A., Li, X. G., Pyapali, G. K., Ylinen, A., & Buzsáki, G. (1995). Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo. The Journal of Comparative Neurology, 356, 580–594.PubMedCrossRef
Zurück zum Zitat Vicini, S., Wang, J. F., Li, J. H., Zhu, W. J., Wang, Y. H., Luo, J. H., et al. (1998). Functional and pharmacological differences between recombinant N-methyl-d-aspartate receptors. Journal of Neurophysiology, 79, 555–566.PubMed Vicini, S., Wang, J. F., Li, J. H., Zhu, W. J., Wang, Y. H., Luo, J. H., et al. (1998). Functional and pharmacological differences between recombinant N-methyl-d-aspartate receptors. Journal of Neurophysiology, 79, 555–566.PubMed
Zurück zum Zitat Wallenstein, G. V., & Hasselmo, M. E. (1997). GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. Journal of Neurophysiology, 78, 393–408.PubMed Wallenstein, G. V., & Hasselmo, M. E. (1997). GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. Journal of Neurophysiology, 78, 393–408.PubMed
Zurück zum Zitat Williams, S. H., & Johnston, D. (1991). Kinetic properties of two anatomically distinct excitatory synapses in hippocampal CA3 pyramidal neurons. Journal of Neurophysiology, 66, 1010–1020.PubMed Williams, S. H., & Johnston, D. (1991). Kinetic properties of two anatomically distinct excitatory synapses in hippocampal CA3 pyramidal neurons. Journal of Neurophysiology, 66, 1010–1020.PubMed
Metadaten
Titel
A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells
verfasst von
John L. Baker
Tamara Perez-Rosello
Michele Migliore
Germán Barrionuevo
Giorgio A. Ascoli
Publikationsdatum
01.08.2011
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2011
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0304-x

Weitere Artikel der Ausgabe 1/2011

Journal of Computational Neuroscience 1/2011 Zur Ausgabe