Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2013

01.12.2013

Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions

verfasst von: Dong Song, Haonan Wang, Catherine Y. Tu, Vasilis Z. Marmarelis, Robert E. Hampson, Sam A. Deadwyler, Theodore W. Berger

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One key problem in computational neuroscience and neural engineering is the identification and modeling of functional connectivity in the brain using spike train data. To reduce model complexity, alleviate overfitting, and thus facilitate model interpretation, sparse representation and estimation of functional connectivity is needed. Sparsities include global sparsity, which captures the sparse connectivities between neurons, and local sparsity, which reflects the active temporal ranges of the input-output dynamical interactions. In this paper, we formulate a generalized functional additive model (GFAM) and develop the associated penalized likelihood estimation methods for such a modeling problem. A GFAM consists of a set of basis functions convolving the input signals, and a link function generating the firing probability of the output neuron from the summation of the convolutions weighted by the sought model coefficients. Model sparsities are achieved by using various penalized likelihood estimations and basis functions. Specifically, we introduce two variations of the GFAM using a global basis (e.g., Laguerre basis) and group LASSO estimation, and a local basis (e.g., B-spline basis) and group bridge estimation, respectively. We further develop an optimization method based on quadratic approximation of the likelihood function for the estimation of these models. Simulation and experimental results show that both group-LASSO-Laguerre and group-bridge-B-spline can capture faithfully the global sparsities, while the latter can replicate accurately and simultaneously both global and local sparsities. The sparse models outperform the full models estimated with the standard maximum likelihood method in out-of-sample predictions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aertsen, A. M. H. J., Gerstein, G. L., Habib, M. K., & Palm, G. (1989). Dynamics of neuronal firing correlation—modulation of effective connectivity. Journal of Neurophysiology, 61(5), 900–917.PubMed Aertsen, A. M. H. J., Gerstein, G. L., Habib, M. K., & Palm, G. (1989). Dynamics of neuronal firing correlation—modulation of effective connectivity. Journal of Neurophysiology, 61(5), 900–917.PubMed
Zurück zum Zitat Berger, T. W., Ahuja, A., Courellis, S. H., Deadwyler, S. A., Erinjippurath, G., Gerhardt, G. A., et al. (2005). Restoring lost cognitive function. IEEE Engineering in Medicine and Biology Magazine, 24(5), 30–44.PubMedCrossRef Berger, T. W., Ahuja, A., Courellis, S. H., Deadwyler, S. A., Erinjippurath, G., Gerhardt, G. A., et al. (2005). Restoring lost cognitive function. IEEE Engineering in Medicine and Biology Magazine, 24(5), 30–44.PubMedCrossRef
Zurück zum Zitat Berger, T. W., Song, D., Chan, R. H. M., & Marmarelis, V. Z. (2010). The neurobiological basis of cognition: identification by multi-input, multioutput nonlinear dynamic modeling. Proceedings of the IEEE, 98(3), 356–374.PubMedCrossRef Berger, T. W., Song, D., Chan, R. H. M., & Marmarelis, V. Z. (2010). The neurobiological basis of cognition: identification by multi-input, multioutput nonlinear dynamic modeling. Proceedings of the IEEE, 98(3), 356–374.PubMedCrossRef
Zurück zum Zitat Berger, T. W., Hampson, R. E., Song, D., Goonawardena, A., Marmarelis, V. Z., & Deadwyler, S. A. (2011). A cortical neural prosthesis for restoring and enhancing memory. Journal of Neural Engineering, 8(4), 046017.PubMedCrossRef Berger, T. W., Hampson, R. E., Song, D., Goonawardena, A., Marmarelis, V. Z., & Deadwyler, S. A. (2011). A cortical neural prosthesis for restoring and enhancing memory. Journal of Neural Engineering, 8(4), 046017.PubMedCrossRef
Zurück zum Zitat Berger, T. W., Song, D., Chan, R. H. M., Marmarelis, V. Z., LaCoss, J., Wills, J., et al. (2012). A Hippocampal Cognitive Prosthesis: Multi-Input, Multi-Output Nonlinear Modeling and VLSI Implementation. IEEE Trans Neural Syst Rehabil Eng, in press. Berger, T. W., Song, D., Chan, R. H. M., Marmarelis, V. Z., LaCoss, J., Wills, J., et al. (2012). A Hippocampal Cognitive Prosthesis: Multi-Input, Multi-Output Nonlinear Modeling and VLSI Implementation. IEEE Trans Neural Syst Rehabil Eng, in press.
Zurück zum Zitat Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., & Frank, L. M. (2002). The time-rescaling theorem and its application to neural spike train data analysis. Neural Computation, 14(2), 325–346.PubMedCrossRef Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., & Frank, L. M. (2002). The time-rescaling theorem and its application to neural spike train data analysis. Neural Computation, 14(2), 325–346.PubMedCrossRef
Zurück zum Zitat Brown, E. N., Kass, R. E., & Mitra, P. P. (2004). Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neuroscience, 7(5), 456–461.PubMedCrossRef Brown, E. N., Kass, R. E., & Mitra, P. P. (2004). Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neuroscience, 7(5), 456–461.PubMedCrossRef
Zurück zum Zitat Chen, Z., Putrino, D. F., Ghosh, S., Barbieri, R., & Brown, E. N. (2011). Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data. [Article]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(2), 121–135.PubMedCrossRef Chen, Z., Putrino, D. F., Ghosh, S., Barbieri, R., & Brown, E. N. (2011). Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data. [Article]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(2), 121–135.PubMedCrossRef
Zurück zum Zitat de Boor, C. (1972). On calculating with B-splines. Journal of Approximation Theory, 6, 50–62.CrossRef de Boor, C. (1972). On calculating with B-splines. Journal of Approximation Theory, 6, 50–62.CrossRef
Zurück zum Zitat Deadwyler, S. A., Bunn, T., & Hampson, R. E. (1996). Hippocampal ensemble activity during spatial delayed-nonmatch-to-sample performance in rats. Journal of Neuroscience, 16(1), 354–372.PubMed Deadwyler, S. A., Bunn, T., & Hampson, R. E. (1996). Hippocampal ensemble activity during spatial delayed-nonmatch-to-sample performance in rats. Journal of Neuroscience, 16(1), 354–372.PubMed
Zurück zum Zitat Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11(2), 89–102.CrossRef Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11(2), 89–102.CrossRef
Zurück zum Zitat Eldawlatly, S., Jin, R., & Oweiss, K. G. (2009). Identifying functional connectivity in large-scale neural ensemble recordings: a multiscale data mining approach. Neural Computation, 21(2), 450–477.PubMedCrossRef Eldawlatly, S., Jin, R., & Oweiss, K. G. (2009). Identifying functional connectivity in large-scale neural ensemble recordings: a multiscale data mining approach. Neural Computation, 21(2), 450–477.PubMedCrossRef
Zurück zum Zitat Frank, I. E., & Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35(2), 109–135.CrossRef Frank, I. E., & Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35(2), 109–135.CrossRef
Zurück zum Zitat Fu, W. J. (1998). Penalized regression: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 7(3), 397–416. Fu, W. J. (1998). Penalized regression: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 7(3), 397–416.
Zurück zum Zitat Garofalo, M., Nieus, T., Massobrio, P., & Martinoia, S. (2009). Evaluation of the Performance of Information Theory-Based Methods and Cross-Correlation to Estimate the Functional Connectivity in Cortical Networks. Plos One, 4(8). Garofalo, M., Nieus, T., Massobrio, P., & Martinoia, S. (2009). Evaluation of the Performance of Information Theory-Based Methods and Cross-Correlation to Estimate the Functional Connectivity in Cortical Networks. Plos One, 4(8).
Zurück zum Zitat Gerhard, F., Pipa, G., Lima, B., Neuenschwander, S., & Gerstner, W. (2011). Extraction of network topology from multi-electrode recordings: is there a small-world effect? Frontiers in Computational Neuroscience, 5, 1–13.CrossRef Gerhard, F., Pipa, G., Lima, B., Neuenschwander, S., & Gerstner, W. (2011). Extraction of network topology from multi-electrode recordings: is there a small-world effect? Frontiers in Computational Neuroscience, 5, 1–13.CrossRef
Zurück zum Zitat Gerwinn, S., Macke, J. H., & Bethge, M. (2010). Bayesian inference for generalized linear models for spiking neurons. Frontiers in Computational Neuroscience, 4. Gerwinn, S., Macke, J. H., & Bethge, M. (2010). Bayesian inference for generalized linear models for spiking neurons. Frontiers in Computational Neuroscience, 4.
Zurück zum Zitat Gourevitch, B., & Eggermont, J. J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97(3), 2533–2543.PubMedCrossRef Gourevitch, B., & Eggermont, J. J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97(3), 2533–2543.PubMedCrossRef
Zurück zum Zitat Hampson, R. E., Simeral, J. D., & Deadwyler, S. A. (1999). Distribution of spatial and nonspatial information in dorsal hippocampus. Nature, 402(6762), 610–614. doi:10.1038/45154.PubMedCrossRef Hampson, R. E., Simeral, J. D., & Deadwyler, S. A. (1999). Distribution of spatial and nonspatial information in dorsal hippocampus. Nature, 402(6762), 610–614. doi:10.​1038/​45154.PubMedCrossRef
Zurück zum Zitat Haslinger, R., Pipa, G., & Brown, E. (2010). Discrete time rescaling theorem: determining goodness of fit for discrete time statistical models of neural spiking. Neural Computation, 22(10), 2477–2506.PubMedCrossRef Haslinger, R., Pipa, G., & Brown, E. (2010). Discrete time rescaling theorem: determining goodness of fit for discrete time statistical models of neural spiking. Neural Computation, 22(10), 2477–2506.PubMedCrossRef
Zurück zum Zitat Hille, B. (1992). Ionic channels of excitable membranes. Sunderland: Sinauer Associates. Hille, B. (1992). Ionic channels of excitable membranes. Sunderland: Sinauer Associates.
Zurück zum Zitat Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12(5), 995–1007.PubMedCrossRef Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12(5), 995–1007.PubMedCrossRef
Zurück zum Zitat Huang, J., Ma, S., Xie, H., & Zhang, C.-H. (2009). A group bridge approach for variable selection. Biometrika, 96(4), 1024.CrossRef Huang, J., Ma, S., Xie, H., & Zhang, C.-H. (2009). A group bridge approach for variable selection. Biometrika, 96(4), 1024.CrossRef
Zurück zum Zitat Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M., & Beggs, J. M. (2011). Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical Network Model. Plos One, 6(11). Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M., & Beggs, J. M. (2011). Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical Network Model. Plos One, 6(11).
Zurück zum Zitat Johnston, D. (1999). Foundations of cellular neurophysiology. Cambridge: The MIT Press. Johnston, D. (1999). Foundations of cellular neurophysiology. Cambridge: The MIT Press.
Zurück zum Zitat Kass, R. E., & Ventura, V. (2001). A spike-train probability model. Neural Computation, 13(8), 1713–1720.PubMedCrossRef Kass, R. E., & Ventura, V. (2001). A spike-train probability model. Neural Computation, 13(8), 1713–1720.PubMedCrossRef
Zurück zum Zitat Kelly, R. C., Smith, M. A., Kass, R. E., & Lee, T. S. (2010). Accounting for network effects in neuronal responses using L1 regularized point process models. Advances in Neural Information Processing Systems (NIPS), 23, 1099–1107. Kelly, R. C., Smith, M. A., Kass, R. E., & Lee, T. S. (2010). Accounting for network effects in neuronal responses using L1 regularized point process models. Advances in Neural Information Processing Systems (NIPS), 23, 1099–1107.
Zurück zum Zitat Kim, S., Putrino, D., Ghosh, S., & Brown, E. N. (2011). A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity. Plos Computational Biology, 7(3). Kim, S., Putrino, D., Ghosh, S., & Brown, E. N. (2011). A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity. Plos Computational Biology, 7(3).
Zurück zum Zitat Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2004). Applied linear statistical models (5th ed.). Boston: McGraw-Hill/Irwin. Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2004). Applied linear statistical models (5th ed.). Boston: McGraw-Hill/Irwin.
Zurück zum Zitat Li, W. X. Y., Chan, R. H. M., Zhang, W., Cheung, R. C. C., Song, D., & Berger, T. W. (2011). High-performance and scalable system architecture for the real-time estimation of generalized laguerre-volterra MIMO model from neural population spiking activity. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(4), 489–501.CrossRef Li, W. X. Y., Chan, R. H. M., Zhang, W., Cheung, R. C. C., Song, D., & Berger, T. W. (2011). High-performance and scalable system architecture for the real-time estimation of generalized laguerre-volterra MIMO model from neural population spiking activity. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(4), 489–501.CrossRef
Zurück zum Zitat Li, L., Park, I. M., Seth, S., Sanchez, J. C., & Principe, J. C. (2012). Functional connectivity dynamics among cortical neurons: a dependence analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(1), 18–30.PubMedCrossRef Li, L., Park, I. M., Seth, S., Sanchez, J. C., & Principe, J. C. (2012). Functional connectivity dynamics among cortical neurons: a dependence analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(1), 18–30.PubMedCrossRef
Zurück zum Zitat Marmarelis, V. Z. (1993). Identification of nonlinear biological systems using Laguerre expansions of kernels. Annals of Biomedical Engineering, 21(6), 573–589.PubMedCrossRef Marmarelis, V. Z. (1993). Identification of nonlinear biological systems using Laguerre expansions of kernels. Annals of Biomedical Engineering, 21(6), 573–589.PubMedCrossRef
Zurück zum Zitat Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems (IEEE press series on biomedical engineering). Hoboken: Wiley-IEEE Press.CrossRef Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems (IEEE press series on biomedical engineering). Hoboken: Wiley-IEEE Press.CrossRef
Zurück zum Zitat McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). Boca Raton: Chapman & Hall/CRC. McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). Boca Raton: Chapman & Hall/CRC.
Zurück zum Zitat Nedungadi, A. G., Rangarajan, G., Jain, N., & Ding, M. Z. (2009). Analyzing multiple spike trains with nonparametric granger causality. Journal of Computational Neuroscience, 27(1), 55–64.PubMedCrossRef Nedungadi, A. G., Rangarajan, G., Jain, N., & Ding, M. Z. (2009). Analyzing multiple spike trains with nonparametric granger causality. Journal of Computational Neuroscience, 27(1), 55–64.PubMedCrossRef
Zurück zum Zitat Ogura, H. (1972). Orthogonal functionals of the Poisson process. IEEE Transactions on Information Theory, 18(4), 473–481.CrossRef Ogura, H. (1972). Orthogonal functionals of the Poisson process. IEEE Transactions on Information Theory, 18(4), 473–481.CrossRef
Zurück zum Zitat Okatan, M., Wilson, M. A., & Brown, E. N. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17(9), 1927–1961.PubMedCrossRef Okatan, M., Wilson, M. A., & Brown, E. N. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17(9), 1927–1961.PubMedCrossRef
Zurück zum Zitat Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15(6), 1191–1253.CrossRef Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15(6), 1191–1253.CrossRef
Zurück zum Zitat Paninski, L., Pillow, J. W., & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Computation, 16(12), 2533–2561.PubMedCrossRef Paninski, L., Pillow, J. W., & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Computation, 16(12), 2533–2561.PubMedCrossRef
Zurück zum Zitat Park, M., & Pillow, J. W. (2011). Receptive Field Inference with Localized Priors. Plos Computational Biology, 7(10). Park, M., & Pillow, J. W. (2011). Receptive Field Inference with Localized Priors. Plos Computational Biology, 7(10).
Zurück zum Zitat Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11003–11013.PubMedCrossRef Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11003–11013.PubMedCrossRef
Zurück zum Zitat Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–999.PubMedCrossRef Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–999.PubMedCrossRef
Zurück zum Zitat Quinn, C. J., Coleman, T. P., Kiyavash, N., & Hatsopoulos, N. G. (2011). Estimating the directed information to infer causal relationships in ensemble neural spike train recordings. Journal of Computational Neuroscience, 30(1), 17–44.PubMedCrossRef Quinn, C. J., Coleman, T. P., Kiyavash, N., & Hatsopoulos, N. G. (2011). Estimating the directed information to infer causal relationships in ensemble neural spike train recordings. Journal of Computational Neuroscience, 30(1), 17–44.PubMedCrossRef
Zurück zum Zitat Reed, J. L., & Kaas, J. H. (2010). Statistical analysis of large-scale neuronal recording data. Neural Networks, 23(6), 673–684.PubMedCrossRef Reed, J. L., & Kaas, J. H. (2010). Statistical analysis of large-scale neuronal recording data. Neural Networks, 23(6), 673–684.PubMedCrossRef
Zurück zum Zitat Schmidt, M., Fung, G., & Rosales, R. (2007). Fast optimization methods for L1 regularization: A comparative study and two new approaches. In J. N. Kok, J. Koronacki, R. L. DeMantaras, S. Matwin, D. Mladenic, & A. Skowron (Eds.), Machine learning: ECML 2007, proceedings (Vol. 4701, pp. 286–297, lecture notes in artificial intelligence). Berlin: Springer-Verlag Berlin. Schmidt, M., Fung, G., & Rosales, R. (2007). Fast optimization methods for L1 regularization: A comparative study and two new approaches. In J. N. Kok, J. Koronacki, R. L. DeMantaras, S. Matwin, D. Mladenic, & A. Skowron (Eds.), Machine learning: ECML 2007, proceedings (Vol. 4701, pp. 286–297, lecture notes in artificial intelligence). Berlin: Springer-Verlag Berlin.
Zurück zum Zitat Schmidt, M., Murphy, K., Fung, G., Rosales, R., & Ieee (2008). Structure learning in random fields for heart motion abnormality detection. In 2008 Ieee Conference on Computer Vision and Pattern Recognition, Vols 1–12 (pp. 203–210, Proceedings-Ieee Computer Society Conference on Computer Vision and Pattern Recognition). Schmidt, M., Murphy, K., Fung, G., Rosales, R., & Ieee (2008). Structure learning in random fields for heart motion abnormality detection. In 2008 Ieee Conference on Computer Vision and Pattern Recognition, Vols 1–12 (pp. 203–210, Proceedings-Ieee Computer Society Conference on Computer Vision and Pattern Recognition).
Zurück zum Zitat Schumaker, L. (1980). Spline Functions: Basic Theory (American Scientist): Wiley. Schumaker, L. (1980). Spline Functions: Basic Theory (American Scientist): Wiley.
Zurück zum Zitat Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.CrossRef Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.CrossRef
Zurück zum Zitat So, K., Koralek, A. C., Ganguly, K., Gastpar, M. C., & Carmena, J. M. (2012). Assessing functional connectivity of neural ensembles using directed information. Journal of Neural Engineering, 9(2), 026004.PubMedCrossRef So, K., Koralek, A. C., Ganguly, K., Gastpar, M. C., & Carmena, J. M. (2012). Assessing functional connectivity of neural ensembles using directed information. Journal of Neural Engineering, 9(2), 026004.PubMedCrossRef
Zurück zum Zitat Song, D., & Berger, T. W. (2009). Identification of nonlinear dynamics in neural population activity. In K. G. Oweiss (Ed.), Statistical signal processing for neuroscience and neurotechnology. Boston: McGraw-Hill/Irwin. Song, D., & Berger, T. W. (2009). Identification of nonlinear dynamics in neural population activity. In K. G. Oweiss (Ed.), Statistical signal processing for neuroscience and neurotechnology. Boston: McGraw-Hill/Irwin.
Zurück zum Zitat Song, D., Chan, R. H., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2007). Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Transactions on Biomedical Engineering, 54(6 Pt 1), 1053–1066.PubMedCrossRef Song, D., Chan, R. H., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2007). Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Transactions on Biomedical Engineering, 54(6 Pt 1), 1053–1066.PubMedCrossRef
Zurück zum Zitat Song, D., Chan, R. H., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2009a). Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Networks, 22(9), 1340–1351.PubMedCrossRef Song, D., Chan, R. H., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2009a). Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Networks, 22(9), 1340–1351.PubMedCrossRef
Zurück zum Zitat Song, D., Marmarelis, V. Z., & Berger, T. W. (2009b). Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study. Journal of Computational Neuroscience, 26(1), 1–19.PubMedCrossRef Song, D., Marmarelis, V. Z., & Berger, T. W. (2009b). Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study. Journal of Computational Neuroscience, 26(1), 1–19.PubMedCrossRef
Zurück zum Zitat Song, D., Wang, Z., Marmarelis, V. Z., & Berger, T. W. (2009c). Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: experimental study. Journal of Computational Neuroscience, 26(1), 21–37.PubMedCrossRef Song, D., Wang, Z., Marmarelis, V. Z., & Berger, T. W. (2009c). Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: experimental study. Journal of Computational Neuroscience, 26(1), 21–37.PubMedCrossRef
Zurück zum Zitat Song, D., Chan, R.H.M., Marmarelis, V.Z., Hampson, R.E., Deadwyler, S.A., & Berger, T.W. (2011). Estimation and statistical validation of event-invariant nonlinear dynamic models of hippocampal CA3-CA1 population activities. Proceedings of the IEEE EMBS Conference, 3330–3333. Song, D., Chan, R.H.M., Marmarelis, V.Z., Hampson, R.E., Deadwyler, S.A., & Berger, T.W. (2011). Estimation and statistical validation of event-invariant nonlinear dynamic models of hippocampal CA3-CA1 population activities. Proceedings of the IEEE EMBS Conference, 3330–3333.
Zurück zum Zitat Stevenson, I. H., Rebesco, J. M., Miller, L. E., & Kording, K. P. (2008). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18(6), 582–588.PubMedCrossRef Stevenson, I. H., Rebesco, J. M., Miller, L. E., & Kording, K. P. (2008). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18(6), 582–588.PubMedCrossRef
Zurück zum Zitat Stevenson, I. H., Rebesco, J. M., Hatsopoulos, N. G., Haga, Z., Member, L. E. M., & Kording, K. P. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(3), 203–213.PubMedCrossRef Stevenson, I. H., Rebesco, J. M., Hatsopoulos, N. G., Haga, Z., Member, L. E. M., & Kording, K. P. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(3), 203–213.PubMedCrossRef
Zurück zum Zitat Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B (Methodological), 58(1), 267–288. Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B (Methodological), 58(1), 267–288.
Zurück zum Zitat Truccolo, W., & Donoghue, J. P. (2007). Nonparametric modeling of neural point processes via stochastic gradient boosting regression. Neural Computation, 19(3), 672–705.PubMedCrossRef Truccolo, W., & Donoghue, J. P. (2007). Nonparametric modeling of neural point processes via stochastic gradient boosting regression. Neural Computation, 19(3), 672–705.PubMedCrossRef
Zurück zum Zitat Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93(2), 1074–1089.PubMedCrossRef Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93(2), 1074–1089.PubMedCrossRef
Zurück zum Zitat Tu, C. Y., Song, D., Breidt, F. J., Berger, T. W., & Wang, H. (2012). Functional model selection for sparse binary time series with multiple inputs. In S. H. Holan, W. R. Bell, & T. S. McElroy (Eds.), Economic time series: Modeling and seasonality. Boca Raton: Chapman and Hall/CRC. Tu, C. Y., Song, D., Breidt, F. J., Berger, T. W., & Wang, H. (2012). Functional model selection for sparse binary time series with multiple inputs. In S. H. Holan, W. R. Bell, & T. S. McElroy (Eds.), Economic time series: Modeling and seasonality. Boca Raton: Chapman and Hall/CRC.
Zurück zum Zitat Vidne, M., Ahmadian, Y., Shlens, J., Pillow, J. W., Kulkarni, J., Litke, A. M., et al. (2012). Modeling the impact of common noise inputs on the network activity of retinal ganglion cells. Journal of Computational Neuroscience, 33(1), 97–121.PubMedCrossRef Vidne, M., Ahmadian, Y., Shlens, J., Pillow, J. W., Kulkarni, J., Litke, A. M., et al. (2012). Modeling the impact of common noise inputs on the network activity of retinal ganglion cells. Journal of Computational Neuroscience, 33(1), 97–121.PubMedCrossRef
Zurück zum Zitat Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B (Statistical Methodology), 68, 49–67.CrossRef Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B (Statistical Methodology), 68, 49–67.CrossRef
Zurück zum Zitat Zanos, T. P., Courellis, S. H., Berger, T. W., Hampson, R. E., Deadwyler, S. A., & Marmarelis, V. Z. (2008). Nonlinear modeling of causal interrelationships in neuronal ensembles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(4), 336–352.PubMedCrossRef Zanos, T. P., Courellis, S. H., Berger, T. W., Hampson, R. E., Deadwyler, S. A., & Marmarelis, V. Z. (2008). Nonlinear modeling of causal interrelationships in neuronal ensembles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(4), 336–352.PubMedCrossRef
Zurück zum Zitat Zhao, M. Y., Batista, A., Cunningham, J. P., Chestek, C., Rivera-Alvidrez, Z., Kalmar, R., et al. (2012). An L (1)-regularized logistic model for detecting short-term neuronal interactions. Journal of Computational Neuroscience, 32(3), 479–497.PubMedCrossRef Zhao, M. Y., Batista, A., Cunningham, J. P., Chestek, C., Rivera-Alvidrez, Z., Kalmar, R., et al. (2012). An L (1)-regularized logistic model for detecting short-term neuronal interactions. Journal of Computational Neuroscience, 32(3), 479–497.PubMedCrossRef
Zurück zum Zitat Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355–405.PubMedCrossRef Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355–405.PubMedCrossRef
Metadaten
Titel
Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions
verfasst von
Dong Song
Haonan Wang
Catherine Y. Tu
Vasilis Z. Marmarelis
Robert E. Hampson
Sam A. Deadwyler
Theodore W. Berger
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2013
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0455-7

Weitere Artikel der Ausgabe 3/2013

Journal of Computational Neuroscience 3/2013 Zur Ausgabe