Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2014

01.06.2014

Open loop optogenetic control of simulated cortical epileptiform activity

verfasst von: Prashanth Selvaraj, Jamie W. Sleigh, Walter J. Freeman, Heidi E. Kirsch, Andrew J. Szeri

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a model for the use of open loop optogenetic control to inhibit epileptiform activity in a meso scale model of the human cortex. The meso scale cortical model first developed by Liley et al. (2001) is extended to two dimensions and the nature of the seizure waves is studied. We adapt to the meso scale a 4 state functional model of Channelrhodopsin-2 (ChR2) ion channels. The effects of pulsed and constant illumination on the conductance of these ion channels is presented. The inhibitory cell population is targeted for the application of open loop control. Seizure waves are successfully suppressed and the inherent properties of the optogenetic channels ensures charge balance in the cortex, protecting it from damage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The average human cortex has dimensions of \(500 \times 500 \ \text {mm}^{2}\) if it were laid open like a sheet. However, the spiral seizure waves have a radius of curvature that is too large to be appreciated within a domain of the size of an average human cortex, and because cortical dynamics is scale-free, we have used a larger cortical domain to illustrate them.
 
2
The fourth order solver is more accurate in producing results that match experimental observations of conductance, but the first order method takes less computation time to solve the equations. Because the optogenetic channels function at a smaller time scale, and because we are only interested in time scales of the cortical model, the use of the simpler first order method is justified.
 
Literatur
Zurück zum Zitat Bojak, I., & Liley, D.T.J. (2005). Modeling the effects of anesthesia on the electroencephalogram. Physical Review E, 71, 041902.CrossRef Bojak, I., & Liley, D.T.J. (2005). Modeling the effects of anesthesia on the electroencephalogram. Physical Review E, 71, 041902.CrossRef
Zurück zum Zitat Cardin, J., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.H., Moore, C. (2010). Targeted optogenetic stimulation and recordings of neurons in vivo using cell type specific expression of channelrhodopsin-2. Nature Protocols, 5(2), 247–254.PubMedCentralPubMedCrossRef Cardin, J., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.H., Moore, C. (2010). Targeted optogenetic stimulation and recordings of neurons in vivo using cell type specific expression of channelrhodopsin-2. Nature Protocols, 5(2), 247–254.PubMedCentralPubMedCrossRef
Zurück zum Zitat Crick, F. (1999). The impact of molecular biology on neuroscience. Physical Transactions of the Royal Society B: Biological Sciences, 354, 2021–2025.CrossRef Crick, F. (1999). The impact of molecular biology on neuroscience. Physical Transactions of the Royal Society B: Biological Sciences, 354, 2021–2025.CrossRef
Zurück zum Zitat Gluckman, B., Nguyen, H., Weinstein, S., Schiff, S. (2001). Adaptive electric field control of epileptic seizures. Journal of Neuroscience, 21(2), 590–600.PubMed Gluckman, B., Nguyen, H., Weinstein, S., Schiff, S. (2001). Adaptive electric field control of epileptic seizures. Journal of Neuroscience, 21(2), 590–600.PubMed
Zurück zum Zitat Grossman, N., Nikolic, K., Toumazou, C., Degenaar, P. (2011). Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Transactions on Biomedical Engineering, 58(6), 1742–1751.PubMedCrossRef Grossman, N., Nikolic, K., Toumazou, C., Degenaar, P. (2011). Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Transactions on Biomedical Engineering, 58(6), 1742–1751.PubMedCrossRef
Zurück zum Zitat Kramer, M., Kirsch, H., Szeri, A.. (2005). Pathological pattern formation and cortical propagation of epileptic seizures. Journal of the Royal Society Interface, 2, 113–127.PubMedCentralCrossRef Kramer, M., Kirsch, H., Szeri, A.. (2005). Pathological pattern formation and cortical propagation of epileptic seizures. Journal of the Royal Society Interface, 2, 113–127.PubMedCentralCrossRef
Zurück zum Zitat Kramer, M., Szeri, A., Sleigh, J., Kirsch, H. (2007). Mechanisms of seizure propagation in a cortical model. Journal of Computational Neuroscience, 22(1), 63–80.PubMedCrossRef Kramer, M., Szeri, A., Sleigh, J., Kirsch, H. (2007). Mechanisms of seizure propagation in a cortical model. Journal of Computational Neuroscience, 22(1), 63–80.PubMedCrossRef
Zurück zum Zitat Krook-Magnuson, E., Armstrong, C., Oijala, M., Soltesz, I. (2013). On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nature Communications, 4(1376), 1–8. Krook-Magnuson, E., Armstrong, C., Oijala, M., Soltesz, I. (2013). On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nature Communications, 4(1376), 1–8.
Zurück zum Zitat Liley, D.T.J., Cadusch, P.J., Dafilis, M.P. (2001). A spatially continuous mean field theory of electrocortical activity. Network: Computation in Neural Systems, 13, 67–113.CrossRef Liley, D.T.J., Cadusch, P.J., Dafilis, M.P. (2001). A spatially continuous mean field theory of electrocortical activity. Network: Computation in Neural Systems, 13, 67–113.CrossRef
Zurück zum Zitat Lopour, B.A., & Szeri, A.J. (2010). A model of feedback control for the charge-balanced suppression of epileptic seizures. Journal of Computational Neuroscience, 28, 375–387.PubMedCentralPubMedCrossRef Lopour, B.A., & Szeri, A.J. (2010). A model of feedback control for the charge-balanced suppression of epileptic seizures. Journal of Computational Neuroscience, 28, 375–387.PubMedCentralPubMedCrossRef
Zurück zum Zitat Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences, 100(24), 13,940–13,945.CrossRef Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences, 100(24), 13,940–13,945.CrossRef
Zurück zum Zitat Paz, T.P., Davidson, T.J., Frechette, E.S., Delord, B., Parada, I., Peng, K., Deisseroth, K., Huguenard, J.R. (2013). Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nature Neuroscience, 16, 64–70.PubMedCentralPubMedCrossRef Paz, T.P., Davidson, T.J., Frechette, E.S., Delord, B., Parada, I., Peng, K., Deisseroth, K., Huguenard, J.R. (2013). Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nature Neuroscience, 16, 64–70.PubMedCentralPubMedCrossRef
Zurück zum Zitat Richardson, K., Schiff, S., Gluckman, B. (2005). Control of travelling waves in mammalian cortex. Physical Review Letters, 94(28), 103. Richardson, K., Schiff, S., Gluckman, B. (2005). Control of travelling waves in mammalian cortex. Physical Review Letters, 94(28), 103.
Zurück zum Zitat Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., Sleigh, J.W. (2007). Gap junctions mediate large-scale turing structures in a mean-field cortex driven by subcortical noise. Physical Review E, 76(11), 916. Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., Sleigh, J.W. (2007). Gap junctions mediate large-scale turing structures in a mean-field cortex driven by subcortical noise. Physical Review E, 76(11), 916.
Zurück zum Zitat Tønnesen, J., Sørensen, A., Deisseroth, K., Lundberg, C., Kokaia, M. (2009). Optogenetic control of epileptiform activity. Proceedings of the National Academy of Sciences, USA, 106, 12,162–12,167.CrossRef Tønnesen, J., Sørensen, A., Deisseroth, K., Lundberg, C., Kokaia, M. (2009). Optogenetic control of epileptiform activity. Proceedings of the National Academy of Sciences, USA, 106, 12,162–12,167.CrossRef
Zurück zum Zitat Ursino, M., & LaCara, G.E. (2006). Travelling waves and EEG patterns during epileptic seizure: analysis with an integrateand-fire neural network. Journal of Theoretical Biology, 242, 171–187.PubMedCrossRef Ursino, M., & LaCara, G.E. (2006). Travelling waves and EEG patterns during epileptic seizure: analysis with an integrateand-fire neural network. Journal of Theoretical Biology, 242, 171–187.PubMedCrossRef
Zurück zum Zitat Zhang, F., Wang, L.P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood, P. G., Bamberg, E., Nagel, G., Gottschalk, A., Deisseroth, K. (2007). Multimodal fast optical interrogation of neural circuitry. Nature, 446, 633–641.PubMedCrossRef Zhang, F., Wang, L.P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood, P. G., Bamberg, E., Nagel, G., Gottschalk, A., Deisseroth, K. (2007). Multimodal fast optical interrogation of neural circuitry. Nature, 446, 633–641.PubMedCrossRef
Metadaten
Titel
Open loop optogenetic control of simulated cortical epileptiform activity
verfasst von
Prashanth Selvaraj
Jamie W. Sleigh
Walter J. Freeman
Heidi E. Kirsch
Andrew J. Szeri
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0484-2

Weitere Artikel der Ausgabe 3/2014

Journal of Computational Neuroscience 3/2014 Zur Ausgabe