Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2014

01.08.2014

A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony

verfasst von: Jiwei Zhang, Douglas Zhou, David Cai, Aaditya V. Rangan

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Homogeneously structured networks of neurons driven by noise can exhibit a broad range of dynamic behavior. This dynamic behavior can range from homogeneity to synchrony, and often incorporates brief spurts of collaborative activity which we call multiple-firing-events (MFEs). These multiple-firing-events depend on neither structured architecture nor structured input, and are an emergent property of the system. Although these MFEs likely play a major role in the neuronal avalanches observed in culture and in vivo, the mechanisms underlying these MFEs cannot easily be captured using current population-dynamics models. In this work we introduce a coarse-grained framework which illustrates certain dynamics responsible for the generation of MFEs. By using a new kind of ensemble-average, this coarse-grained framework can not only address the nucleation of MFEs, but can also faithfully capture a broad range of dynamic regimes ranging from homogeneity to synchrony.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Battaglia, D., & Hansel, D. (2011). Synchronous chaos and broad band gamma rhythm in a minimal multi-layer model of primary visual cortex. PLoS Computational Biology, 7. Battaglia, D., & Hansel, D. (2011). Synchronous chaos and broad band gamma rhythm in a minimal multi-layer model of primary visual cortex. PLoS Computational Biology, 7.
Zurück zum Zitat Beggs, J.M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23(35), 11167–11177.PubMed Beggs, J.M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23(35), 11167–11177.PubMed
Zurück zum Zitat Bornholdt, S., & Rohl, T. (2003). Self-organized critical neural networks. Physical Review E, 67, 066118.CrossRef Bornholdt, S., & Rohl, T. (2003). Self-organized critical neural networks. Physical Review E, 67, 066118.CrossRef
Zurück zum Zitat Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Comparative Neuroscience, 8, 183–208.CrossRef Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Comparative Neuroscience, 8, 183–208.CrossRef
Zurück zum Zitat Buice, M.A., & Chow, C.C. (2007). Correlations, fluctuations, and stability of a finite-size network of coupled oscillators. Physical Review E, 76, 031118.1–031118.25.CrossRef Buice, M.A., & Chow, C.C. (2007). Correlations, fluctuations, and stability of a finite-size network of coupled oscillators. Physical Review E, 76, 031118.1–031118.25.CrossRef
Zurück zum Zitat Cai, D., Tao, L., Shelley, M., McLaughlin, D. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the Natural Academy Sciences, 101(20), 7757–7762.CrossRef Cai, D., Tao, L., Shelley, M., McLaughlin, D. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the Natural Academy Sciences, 101(20), 7757–7762.CrossRef
Zurück zum Zitat Cai, D., Tao, L., Rangan, A., McLaughlin, D. (2006). Kinetic theory for neuronal network dynamics. Committee in Mathematical Science, 4, 97–127.CrossRef Cai, D., Tao, L., Rangan, A., McLaughlin, D. (2006). Kinetic theory for neuronal network dynamics. Committee in Mathematical Science, 4, 97–127.CrossRef
Zurück zum Zitat Cardanobile, S., & Rotter, S. (2010). Multiplicatively interacting point processes and applications to neural modeling. Journal of Computational Neuroscience, 28, 267–284.PubMedCrossRef Cardanobile, S., & Rotter, S. (2010). Multiplicatively interacting point processes and applications to neural modeling. Journal of Computational Neuroscience, 28, 267–284.PubMedCrossRef
Zurück zum Zitat Churchland, M.M., et al. (2010). Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378.PubMedCentralPubMedCrossRef Churchland, M.M., et al. (2010). Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378.PubMedCentralPubMedCrossRef
Zurück zum Zitat Csicsvari, J., Hirase, H., Mamiya, A., Buzsaki, G. (2000). Ensemble patterns of hippocampal ca3-ca1 neurons during sharp wave-associated population events. Neuron, 28, 585–594.PubMedCrossRef Csicsvari, J., Hirase, H., Mamiya, A., Buzsaki, G. (2000). Ensemble patterns of hippocampal ca3-ca1 neurons during sharp wave-associated population events. Neuron, 28, 585–594.PubMedCrossRef
Zurück zum Zitat Dehghani, N., Hatsopoulos, N.G., Haga, N.G., Parker, R.A., Greger, B., Halgren, E., Cash, S.S., Destexhe, A. (2012). Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep. arXiv:1203.0738v4:[q–bio.NC]. Dehghani, N., Hatsopoulos, N.G., Haga, N.G., Parker, R.A., Greger, B., Halgren, E., Cash, S.S., Destexhe, A. (2012). Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep. arXiv:1203.​0738v4:[q–bio.NC].
Zurück zum Zitat Erdős, P., & Rényi (1959). On random graphs. I. Publicationes Mathematiques (Debr.), 6, 290–297. Erdős, P., & Rényi (1959). On random graphs. I. Publicationes Mathematiques (Debr.), 6, 290–297.
Zurück zum Zitat Erdős, P., & Rényi (1960). On the evolution of random graphs. Magy. Tud. Akad, Mat. Kut. Intéz. Közl., 5, 17–61. Erdős, P., & Rényi (1960). On the evolution of random graphs. Magy. Tud. Akad, Mat. Kut. Intéz. Közl., 5, 17–61.
Zurück zum Zitat Hahn, G., Petermann, T., Havenith, M.N., Yu, S., Singer, W., Plenz, D., Nikolic, D. (2010). Neuronal avalanches in spontaneous activity in vivo. Journal of Neurophysiology, 104, 3313–3322.CrossRef Hahn, G., Petermann, T., Havenith, M.N., Yu, S., Singer, W., Plenz, D., Nikolic, D. (2010). Neuronal avalanches in spontaneous activity in vivo. Journal of Neurophysiology, 104, 3313–3322.CrossRef
Zurück zum Zitat Hatsopoulos, N.G., Ojakangas, C.L., Paniniski, L., Donoghue, J.P. (1998). Information about movement direction obtained from synchronous activity of motor cortical neurons. Proceedings of the National Academy of Science, 95, 15706–15711.CrossRef Hatsopoulos, N.G., Ojakangas, C.L., Paniniski, L., Donoghue, J.P. (1998). Information about movement direction obtained from synchronous activity of motor cortical neurons. Proceedings of the National Academy of Science, 95, 15706–15711.CrossRef
Zurück zum Zitat Hu, Y., Trousdale, J., Josic, K., Shea-Brown, E. (2013). Motif statistics and spike correlations in neuronal networks. Journal of Statistical Mechanics, P03012, 1–51. Hu, Y., Trousdale, J., Josic, K., Shea-Brown, E. (2013). Motif statistics and spike correlations in neuronal networks. Journal of Statistical Mechanics, P03012, 1–51.
Zurück zum Zitat Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., Arieli, A. (2003). Spontaneously emerging cortical representations of visual attributes. Nature, 425, 954–956.PubMedCrossRef Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., Arieli, A. (2003). Spontaneously emerging cortical representations of visual attributes. Nature, 425, 954–956.PubMedCrossRef
Zurück zum Zitat Kohn, A., & Smith, M.A. (2005). Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. Journal of Neuroscience, 25, 3661–73.PubMedCrossRef Kohn, A., & Smith, M.A. (2005). Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. Journal of Neuroscience, 25, 3661–73.PubMedCrossRef
Zurück zum Zitat Lampl, I., Reichova, I., Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22, 361–374.PubMedCrossRef Lampl, I., Reichova, I., Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22, 361–374.PubMedCrossRef
Zurück zum Zitat Ledoux, E., & Brunel, N. (2011). Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Frontiers in Computational Neuroscience, 5(25), 1–17. Ledoux, E., & Brunel, N. (2011). Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Frontiers in Computational Neuroscience, 5(25), 1–17.
Zurück zum Zitat Lee DeVille, R.E., & Peskin, C.S. (2012). Synchrony and asynchrony for neuronal dynamics defined on complex networks. Bulletin of Mathematical Biology, 74, 769–802.CrossRef Lee DeVille, R.E., & Peskin, C.S. (2012). Synchrony and asynchrony for neuronal dynamics defined on complex networks. Bulletin of Mathematical Biology, 74, 769–802.CrossRef
Zurück zum Zitat Leinekugel, X., Khazipov, R., Cannon, R., Hirase, H., Ben-Ari, Y., Buzsaki, G. (2002). Correlated bursts of activity in the neonatal hippocampus in vivo. Science, 296, 2049–2052.PubMedCrossRef Leinekugel, X., Khazipov, R., Cannon, R., Hirase, H., Ben-Ari, Y., Buzsaki, G. (2002). Correlated bursts of activity in the neonatal hippocampus in vivo. Science, 296, 2049–2052.PubMedCrossRef
Zurück zum Zitat Mazzoni, A., Broccard, F.D., Garcia-Perez, E., Bonifazi, P., Ruaro, M.E., Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS One, 5, e439.CrossRef Mazzoni, A., Broccard, F.D., Garcia-Perez, E., Bonifazi, P., Ruaro, M.E., Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS One, 5, e439.CrossRef
Zurück zum Zitat Newhall, K., Kovacic, G., Kramer, P., Zhou, D., Rangan, A.V., Cai, D. (2010). Dynamics of current-based, poisson driven, integrate-and-fire neuronal networks. Committee in Mathematical Science, 8(2), 541–600.CrossRef Newhall, K., Kovacic, G., Kramer, P., Zhou, D., Rangan, A.V., Cai, D. (2010). Dynamics of current-based, poisson driven, integrate-and-fire neuronal networks. Committee in Mathematical Science, 8(2), 541–600.CrossRef
Zurück zum Zitat Petermann, T., Thiagarajan, T.C., Lebedev, M.A., Nicolelis, M.A.L., Chailvo, D.R., Plenz, D. (2009). Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proceedings of the National Academy of Science, 106(37), 15921–15926.CrossRef Petermann, T., Thiagarajan, T.C., Lebedev, M.A., Nicolelis, M.A.L., Chailvo, D.R., Plenz, D. (2009). Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proceedings of the National Academy of Science, 106(37), 15921–15926.CrossRef
Zurück zum Zitat Plenz, D., Stewart, C.V., Shew, W., Yang, H., Klaus, A., Bellay, T. (2011). Multi-electrode array recordings of neuronal avalanches in organotypic cultures. Journal of Visualized Experiments, 54, 2949.PubMed Plenz, D., Stewart, C.V., Shew, W., Yang, H., Klaus, A., Bellay, T. (2011). Multi-electrode array recordings of neuronal avalanches in organotypic cultures. Journal of Visualized Experiments, 54, 2949.PubMed
Zurück zum Zitat Poil, S.S., Hardstone, R., Mansvelder, H.D., Linkenkaer-Hansen, K. (2012). Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. Journal of Neuroscience, 33, 9817–9823.CrossRef Poil, S.S., Hardstone, R., Mansvelder, H.D., Linkenkaer-Hansen, K. (2012). Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. Journal of Neuroscience, 33, 9817–9823.CrossRef
Zurück zum Zitat Rangan, A.V. (2009). Diagrammatic expansion of pulse-coupled network dynamics. Physical Review Letters, 102, 158101.PubMedCrossRef Rangan, A.V. (2009). Diagrammatic expansion of pulse-coupled network dynamics. Physical Review Letters, 102, 158101.PubMedCrossRef
Zurück zum Zitat Rangan, A.V., & Cai, D. (2006). Maximum-entropy closures for kinetic theories of neuronal network dynamics. Physical Review Letters, 96, 178101.PubMedCrossRef Rangan, A.V., & Cai, D. (2006). Maximum-entropy closures for kinetic theories of neuronal network dynamics. Physical Review Letters, 96, 178101.PubMedCrossRef
Zurück zum Zitat Roxin, A., Brunel, N., Hansel, D., Mongillo, G., Vreeswijk, C.V. (2011). On the distribution of firing rates in networks of cortical neurons. Journal of Neuroscience, 31(45), 16217–16226.PubMedCrossRef Roxin, A., Brunel, N., Hansel, D., Mongillo, G., Vreeswijk, C.V. (2011). On the distribution of firing rates in networks of cortical neurons. Journal of Neuroscience, 31(45), 16217–16226.PubMedCrossRef
Zurück zum Zitat Sakata, S., & Harris, K.D. (2009). Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 12(3), 404–418.CrossRef Sakata, S., & Harris, K.D. (2009). Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 12(3), 404–418.CrossRef
Zurück zum Zitat Samonds, J.M., Zhou, Z., Bernard, M.R., Bonds, A.B. (2005). Synchronous activity in cat visual cortex encodes collinear and cocircular contours. Journal of Neurophysiology, 95(4), 2602–2616.PubMedCrossRef Samonds, J.M., Zhou, Z., Bernard, M.R., Bonds, A.B. (2005). Synchronous activity in cat visual cortex encodes collinear and cocircular contours. Journal of Neurophysiology, 95(4), 2602–2616.PubMedCrossRef
Zurück zum Zitat Shew, S., Yang, H., Yu, S., Roy, R., Plenz, D. (2011). Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. Journal of Neuroscience, 31, 55–63.PubMedCentralPubMedCrossRef Shew, S., Yang, H., Yu, S., Roy, R., Plenz, D. (2011). Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. Journal of Neuroscience, 31, 55–63.PubMedCentralPubMedCrossRef
Zurück zum Zitat Sirovich, L., Omurtag, A., Knight, B. (2000). Dynamics of neuronal populations; the equilibrium solution. SIAM Journal on Applied Mathematics, 60, 2009–2028.CrossRef Sirovich, L., Omurtag, A., Knight, B. (2000). Dynamics of neuronal populations; the equilibrium solution. SIAM Journal on Applied Mathematics, 60, 2009–2028.CrossRef
Zurück zum Zitat Vogels, T.P., & Abbott, L.F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25, 10786–95.PubMedCrossRef Vogels, T.P., & Abbott, L.F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25, 10786–95.PubMedCrossRef
Zurück zum Zitat Werner, G. (2007). Metastability, criticality and phase transitions in brain and its models. BioSystems, 90, 496–508.PubMedCrossRef Werner, G. (2007). Metastability, criticality and phase transitions in brain and its models. BioSystems, 90, 496–508.PubMedCrossRef
Zurück zum Zitat Yu, S., Yang, H., Nakahara, H., Santos, G.S., Nikolic, D., Plenz, D. (2011). Higher-order interactions characterized in cortical activity. Journal of Neuroscience, 31, 17514–17526.PubMedCrossRef Yu, S., Yang, H., Nakahara, H., Santos, G.S., Nikolic, D., Plenz, D. (2011). Higher-order interactions characterized in cortical activity. Journal of Neuroscience, 31, 17514–17526.PubMedCrossRef
Zurück zum Zitat Zhang, J.W., Newhall, K., Zhou, D., Rangan, A.V. (2013). Distribution of correlated spiking events in a population-based approach for integrate-and-fire networks. Journal of Computational Neuroscience. 1–17. doi:10.1007/s10827-013-0472-6. Zhang, J.W., Newhall, K., Zhou, D., Rangan, A.V. (2013). Distribution of correlated spiking events in a population-based approach for integrate-and-fire networks. Journal of Computational Neuroscience. 1–17. doi:10.​1007/​s10827-013-0472-6.
Zurück zum Zitat Zhao, L.Q., Beverlin, B., Netoff, T., Nykamp, D.Q. (2011). Synchronization from second order network connectivity statistics. Frontiers in Computational Neuroscience, 5(28), 1-16. doi:10.3389/fncom.2011.00028. Zhao, L.Q., Beverlin, B., Netoff, T., Nykamp, D.Q. (2011). Synchronization from second order network connectivity statistics. Frontiers in Computational Neuroscience, 5(28), 1-16. doi:10.​3389/​fncom.​2011.​00028.
Metadaten
Titel
A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony
verfasst von
Jiwei Zhang
Douglas Zhou
David Cai
Aaditya V. Rangan
Publikationsdatum
01.08.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0488-y

Weitere Artikel der Ausgabe 1/2014

Journal of Computational Neuroscience 1/2014 Zur Ausgabe