Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2014

01.08.2014

A simple Markov model of sodium channels with a dynamic threshold

verfasst von: A. V. Chizhov, E. Yu. Smirnova, K. Kh. Kim, A. V. Zaitsev

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Characteristics of action potential generation are important to understanding brain functioning and, thus, must be understood and modeled. It is still an open question what model can describe concurrently the phenomena of sharp spike shape, the spike threshold variability, and the divisive effect of shunting on the gain of frequency-current dependence. We reproduced these three effects experimentally by patch-clamp recordings in cortical slices, but we failed to simulate them by any of 11 known neuron models, including one- and multi-compartment, with Hodgkin-Huxley and Markov equation-based sodium channel approximations, and those taking into account sodium channel subtype heterogeneity. Basing on our voltage-clamp data characterizing the dependence of sodium channel activation threshold on history of depolarization, we propose a 3-state Markov model with a closed-to-open state transition threshold dependent on slow inactivation. This model reproduces the all three phenomena. As a reduction of this model, a leaky integrate-and-fire model with a dynamic threshold also shows the effect of gain reduction by shunt. These results argue for the mechanism of gain reduction through threshold dynamics determined by the slow inactivation of sodium channels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Azouz, R., & Gray, C. M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. Journal of Neuroscience, 19, 2209–2223.PubMed Azouz, R., & Gray, C. M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. Journal of Neuroscience, 19, 2209–2223.PubMed
Zurück zum Zitat Badel, L., Lefort, S., Brette, R., Petersen, C. C. H., Gerstner, W., & Richardson, M. J. E. (2008). Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of Neurophysiology, 99(2), 656–666.PubMedCrossRef Badel, L., Lefort, S., Brette, R., Petersen, C. C. H., Gerstner, W., & Richardson, M. J. E. (2008). Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of Neurophysiology, 99(2), 656–666.PubMedCrossRef
Zurück zum Zitat Benda, J., Maler, L., & Longtin, A. (2010). Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. Journal of Neurophysiology, 104(5), 2806–2820.PubMedCrossRef Benda, J., Maler, L., & Longtin, A. (2010). Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. Journal of Neurophysiology, 104(5), 2806–2820.PubMedCrossRef
Zurück zum Zitat Borg-Graham, L. (1999). Interpretations of data and mechanisms for hippocampal pyramidal cell models. Cerebral Cortex, 13, 19–138.CrossRef Borg-Graham, L. (1999). Interpretations of data and mechanisms for hippocampal pyramidal cell models. Cerebral Cortex, 13, 19–138.CrossRef
Zurück zum Zitat Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94(5), 3637–3642.PubMedCrossRef Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94(5), 3637–3642.PubMedCrossRef
Zurück zum Zitat Carter, B. C., Giessel, A. J., Sabatini, B. L., & Bean, B. P. (2012). Transient sodium current at subthreshold voltages: activation by EPSP waveforms. Neuron, 75(6), 1081–1093.PubMedCentralPubMedCrossRef Carter, B. C., Giessel, A. J., Sabatini, B. L., & Bean, B. P. (2012). Transient sodium current at subthreshold voltages: activation by EPSP waveforms. Neuron, 75(6), 1081–1093.PubMedCentralPubMedCrossRef
Zurück zum Zitat Chacron, M. J., Longtin, A., St-Hilaire, M., & Maler, L. (2000). Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors. Physical Review Letters, 85(7), 1576–1579.PubMedCrossRef Chacron, M. J., Longtin, A., St-Hilaire, M., & Maler, L. (2000). Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors. Physical Review Letters, 85(7), 1576–1579.PubMedCrossRef
Zurück zum Zitat Chacron, M. J., Pakdaman, K., & Longtin, A. (2003). Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue. Neural Computation, 15(2), 253–278.PubMedCrossRef Chacron, M. J., Pakdaman, K., & Longtin, A. (2003). Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue. Neural Computation, 15(2), 253–278.PubMedCrossRef
Zurück zum Zitat Chacron, M. J., Lindner, B., & Longtin, A. (2007). Threshold fatigue and information transfer. Journal of Computational Neuroscience, 23(3), 301–311.PubMedCrossRef Chacron, M. J., Lindner, B., & Longtin, A. (2007). Threshold fatigue and information transfer. Journal of Computational Neuroscience, 23(3), 301–311.PubMedCrossRef
Zurück zum Zitat Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron, 35, 773–782.PubMedCrossRef Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron, 35, 773–782.PubMedCrossRef
Zurück zum Zitat Chizhov, A. V., & Graham, L. J. (2007). Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons. Physical Review E, 75, 011924.CrossRef Chizhov, A. V., & Graham, L. J. (2007). Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons. Physical Review E, 75, 011924.CrossRef
Zurück zum Zitat Chizhov, A. V., & Graham, L. J. (2008). Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method. Physical Review E, 77, 011910.CrossRef Chizhov, A. V., & Graham, L. J. (2008). Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method. Physical Review E, 77, 011910.CrossRef
Zurück zum Zitat Chizhov A.V., Smirnova E.Yu., Karabasov I.N., Simonov A.Yu., Marinazzo D., Schramm A., Graham L.J. (2011). Spike thresholds dynamics explains the ability of a neuron to divide. Proceedings of the conference. Neuroinformatics, 2, 205–213. Chizhov A.V., Smirnova E.Yu., Karabasov I.N., Simonov A.Yu., Marinazzo D., Schramm A., Graham L.J. (2011). Spike thresholds dynamics explains the ability of a neuron to divide. Proceedings of the conference. Neuroinformatics, 2, 205–213.
Zurück zum Zitat Fernandez, F. R., & White, J. A. (2009). Reduction of spike after depolarization by increased leak conductance alters interspike interval variability. Journal of Neuroscience, 29(4), 973–986.PubMedCentralPubMedCrossRef Fernandez, F. R., & White, J. A. (2009). Reduction of spike after depolarization by increased leak conductance alters interspike interval variability. Journal of Neuroscience, 29(4), 973–986.PubMedCentralPubMedCrossRef
Zurück zum Zitat Fernandez, F. R., & White, J. A. (2010). Gain control in CA1 pyramidal cells using changes in somatic conductance. Journal of Neuroscience, 30(1), 230–241.PubMedCentralPubMedCrossRef Fernandez, F. R., & White, J. A. (2010). Gain control in CA1 pyramidal cells using changes in somatic conductance. Journal of Neuroscience, 30(1), 230–241.PubMedCentralPubMedCrossRef
Zurück zum Zitat Fernandez, F. R., Broicher, T., Truong, A., & White, J. A. (2011). Membrane voltage fluctuations reduce spike frequency adaptation and preserve output gain in CA1 pyramidal neurons in a high-conductance state. Journal of Neuroscience, 31(10), 3880–3893.PubMedCentralPubMedCrossRef Fernandez, F. R., Broicher, T., Truong, A., & White, J. A. (2011). Membrane voltage fluctuations reduce spike frequency adaptation and preserve output gain in CA1 pyramidal neurons in a high-conductance state. Journal of Neuroscience, 31(10), 3880–3893.PubMedCentralPubMedCrossRef
Zurück zum Zitat Fricker, D., Verheugen, J. A., & Miles, R. (1999). Cell-attached measurements of the firing threshold of rat hippocampal neurones. Journal of Physiology, 517(3), 791–804.PubMedCentralPubMedCrossRef Fricker, D., Verheugen, J. A., & Miles, R. (1999). Cell-attached measurements of the firing threshold of rat hippocampal neurones. Journal of Physiology, 517(3), 791–804.PubMedCentralPubMedCrossRef
Zurück zum Zitat Graham, L. J., & Schramm, A. (2009). In vivo dynamic clamp: The functional impact of synaptic and intrinsic conductances in visual cortex. In A. Destexhe, & T. Bal (Eds.) Dynamic clamp: From principles to applications. Springer. Graham, L. J., & Schramm, A. (2009). In vivo dynamic clamp: The functional impact of synaptic and intrinsic conductances in visual cortex. In A. Destexhe, & T. Bal (Eds.) Dynamic clamp: From principles to applications. Springer.
Zurück zum Zitat Gutkin, B., & Ermentrout, G. B. (2006). Neuroscience: spikes too kinky in the cortex? Nature, 440(7087), 999–1000.PubMedCrossRef Gutkin, B., & Ermentrout, G. B. (2006). Neuroscience: spikes too kinky in the cortex? Nature, 440(7087), 999–1000.PubMedCrossRef
Zurück zum Zitat Henze, D. A., & Buzsáki, G. (2001). Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience, 105(1), 121–130.PubMedCrossRef Henze, D. A., & Buzsáki, G. (2001). Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience, 105(1), 121–130.PubMedCrossRef
Zurück zum Zitat Huang, M., Volgushev, M., & Wolf, F. (2012). A small fraction of strongly cooperative sodium channels boosts neuronal encoding of high frequencies. PLoS One, 7, e37629.PubMedCentralPubMedCrossRef Huang, M., Volgushev, M., & Wolf, F. (2012). A small fraction of strongly cooperative sodium channels boosts neuronal encoding of high frequencies. PLoS One, 7, e37629.PubMedCentralPubMedCrossRef
Zurück zum Zitat Johannesma, P. I. M. (1968). Diffusion models of the stochastic acticity of neurons. In E. R. Caianiello (Ed.), Neural networks (pp. 116–144). Berlin: Springer.CrossRef Johannesma, P. I. M. (1968). Diffusion models of the stochastic acticity of neurons. In E. R. Caianiello (Ed.), Neural networks (pp. 116–144). Berlin: Springer.CrossRef
Zurück zum Zitat Liu, Y. H., & Wang, X. J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience, 10(1), 25–45.PubMedCrossRef Liu, Y. H., & Wang, X. J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience, 10(1), 25–45.PubMedCrossRef
Zurück zum Zitat McCormick, D. A., Shu, Y., & Yu, Y. (2007). Neurophysiology: Hodgkin and Huxley model–still standing? Nature, 445(E1–2), discussion E2–3. McCormick, D. A., Shu, Y., & Yu, Y. (2007). Neurophysiology: Hodgkin and Huxley model–still standing? Nature, 445(E1–2), discussion E2–3.
Zurück zum Zitat Migliore, M., Hoffman, D. A., Magee, J. G., & Jonhston, D. (1999). Role of an A-type K + conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7, 5–15.PubMedCrossRef Migliore, M., Hoffman, D. A., Magee, J. G., & Jonhston, D. (1999). Role of an A-type K + conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7, 5–15.PubMedCrossRef
Zurück zum Zitat Milescu, L. S., Yamanishi, T., Ptak, K., & Smith, J. C. (2010). Kinetic properties and functional dynamics of sodium channels during repetitive spiking in a slow pacemaker neuron. Journal of Neuroscience, 30(36), 12113–12127.PubMedCentralPubMedCrossRef Milescu, L. S., Yamanishi, T., Ptak, K., & Smith, J. C. (2010). Kinetic properties and functional dynamics of sodium channels during repetitive spiking in a slow pacemaker neuron. Journal of Neuroscience, 30(36), 12113–12127.PubMedCentralPubMedCrossRef
Zurück zum Zitat Naundorf, B., Wolf, F., & Volgushev, M. (2006). Unique features of action potential initiation in cortical neurons. Nature, 440(7087), 1060–1063.PubMedCrossRef Naundorf, B., Wolf, F., & Volgushev, M. (2006). Unique features of action potential initiation in cortical neurons. Nature, 440(7087), 1060–1063.PubMedCrossRef
Zurück zum Zitat Platkiewicz, J., & Brette, R. (2011). Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Computational Biology, 7, e1001129.PubMedCentralPubMedCrossRef Platkiewicz, J., & Brette, R. (2011). Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Computational Biology, 7, e1001129.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wilent, W. B., & Contreras, D. (2005). Stimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons. Journal of Neuroscience, 25, 2983–2991.PubMedCrossRef Wilent, W. B., & Contreras, D. (2005). Stimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons. Journal of Neuroscience, 25, 2983–2991.PubMedCrossRef
Zurück zum Zitat Yu, Y., Shu, Y., & McCormick, D. A. (2008). Cortical action potential back propagation explains spike threshold variability and rapid-onset kinetics. Journal of Neuroscience, 28(29), 7260–7272.PubMedCentralPubMedCrossRef Yu, Y., Shu, Y., & McCormick, D. A. (2008). Cortical action potential back propagation explains spike threshold variability and rapid-onset kinetics. Journal of Neuroscience, 28(29), 7260–7272.PubMedCentralPubMedCrossRef
Metadaten
Titel
A simple Markov model of sodium channels with a dynamic threshold
verfasst von
A. V. Chizhov
E. Yu. Smirnova
K. Kh. Kim
A. V. Zaitsev
Publikationsdatum
01.08.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-014-0496-6

Weitere Artikel der Ausgabe 1/2014

Journal of Computational Neuroscience 1/2014 Zur Ausgabe