Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2014

01.12.2014

Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury

verfasst von: Vladislav Volman, Laurel J. Ng

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neurological sequelae of mild traumatic brain injury are associated with the damage to white matter myelinated axons. In vitro models of axonal injury suggest that the progression to pathological ruin is initiated by the mechanical damage to tetrodotoxin-sensitive voltage-gated sodium channels that breaches the ion balance through alteration in kinetic properties of these channels. In myelinated axons, sodium channels are concentrated at nodes of Ranvier, making these sites vulnerable to mechanical injury. Nodal damage can also be inflicted by injury-induced partial demyelination of paranode/juxtaparanode compartments that flank the nodes and contain high density of voltage-gated potassium channels. Demyelination-induced potassium deregulation can further aggravate axonal damage; however, the role of paranode/juxtaparanode demyelination in immediate impairment of axonal function, and its contribution to the development of axonal depolarization remain elusive. A biophysically realistic computational model of myelinated axon that incorporates ion exchange mechanisms and nodal/paranodal/juxtaparanodal organization was developed and used to study the impact of injury-induced demyelination on axonal signal transmission. Injured axons showed alterations in signal propagation that were consistent with the experimental findings and with the notion of reduced axonal excitability immediately post trauma. Injury-induced demyelination strongly modulated the rate of axonal depolarization, suggesting that trauma-induced damage to paranode myelin can affect axonal transition to degradation. Results of these studies clarify the contribution of paranode demyelination to immediate post trauma alterations in axonal function and suggest that partial paranode demyelination should be considered as another “injury parameter” that is likely to determine the stability of axonal function.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bhat, M. A. (2003). Molecular organization of axo-glial junctions. Current Opinion in Neurobiology, 13, 552–559.PubMedCrossRef Bhat, M. A. (2003). Molecular organization of axo-glial junctions. Current Opinion in Neurobiology, 13, 552–559.PubMedCrossRef
Zurück zum Zitat Bhat, M. A., Rios, J. C., Lu, Y., Garcia-Fresco, G. P., Ching, W., Martin, M. S., et al. (2001). Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron, 30, 369–383.PubMedCrossRef Bhat, M. A., Rios, J. C., Lu, Y., Garcia-Fresco, G. P., Ching, W., Martin, M. S., et al. (2001). Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron, 30, 369–383.PubMedCrossRef
Zurück zum Zitat Bigler, E. D. (2004). Neuropsychological results and neuropathological findings in autopsy in a case of mild traumatic brain injury. Journal International Neuropsychology Social, 10(5), 794–800.CrossRef Bigler, E. D. (2004). Neuropsychological results and neuropathological findings in autopsy in a case of mild traumatic brain injury. Journal International Neuropsychology Social, 10(5), 794–800.CrossRef
Zurück zum Zitat Black, J. A., Kocsis, J. D., & Waxman, S. G. (1990). Ion channel organization of the myelinated fiber. Trends in Neuroscience, 13(2), 48–54.CrossRef Black, J. A., Kocsis, J. D., & Waxman, S. G. (1990). Ion channel organization of the myelinated fiber. Trends in Neuroscience, 13(2), 48–54.CrossRef
Zurück zum Zitat Blumbergs, P. C., Scott, G., Manavis, J., Wainwright, H., Simpson, D. A., & McLean, A. J. (1994). Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet, 344, 1055–1056.PubMedCrossRef Blumbergs, P. C., Scott, G., Manavis, J., Wainwright, H., Simpson, D. A., & McLean, A. J. (1994). Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet, 344, 1055–1056.PubMedCrossRef
Zurück zum Zitat Bostock, H. (1983). The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. Journal of Physiology, 341, 59–74.PubMedCentralPubMed Bostock, H. (1983). The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. Journal of Physiology, 341, 59–74.PubMedCentralPubMed
Zurück zum Zitat Boucher, P. A., Joos, B., & Morris, C. E. (2012). Coupled left-shift of Nav channels: modeling the Na + −loading and dysfunctional excitability of damaged axons. Journal of Computational Neuroscience, 33(2), 301–319.PubMedCrossRef Boucher, P. A., Joos, B., & Morris, C. E. (2012). Coupled left-shift of Nav channels: modeling the Na + −loading and dysfunctional excitability of damaged axons. Journal of Computational Neuroscience, 33(2), 301–319.PubMedCrossRef
Zurück zum Zitat Bramlett, H. M., & Dietrich, W. D. (2002). Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats. Acta Neuropathologica, 103, 607–614.PubMedCrossRef Bramlett, H. M., & Dietrich, W. D. (2002). Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats. Acta Neuropathologica, 103, 607–614.PubMedCrossRef
Zurück zum Zitat Brill, M. H., Waxman, S. G., Moore, J. W., & Joyner, R. W. (1977). Conduction velocity and spike configuration in myelinated fibres: computed dependence on internode distance. Journal Neurological Neurosurgery Psychiatry, 40(769–774). Brill, M. H., Waxman, S. G., Moore, J. W., & Joyner, R. W. (1977). Conduction velocity and spike configuration in myelinated fibres: computed dependence on internode distance. Journal Neurological Neurosurgery Psychiatry, 40(769–774).
Zurück zum Zitat Buki, A., & Povlishock, J. T. (2006). All roads lead to disconnection?–Traumatic axonal injury revisited. Acta Neurochirurgica (Wien), 148(2), 181–193.CrossRef Buki, A., & Povlishock, J. T. (2006). All roads lead to disconnection?–Traumatic axonal injury revisited. Acta Neurochirurgica (Wien), 148(2), 181–193.CrossRef
Zurück zum Zitat Coggan, J. S., Ocker, G. K., Sejnowski, T. J., & Prescott, S. A. (2011). Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models. Journal of Neural Engineering, 8(6), 065002.PubMedCentralPubMedCrossRef Coggan, J. S., Ocker, G. K., Sejnowski, T. J., & Prescott, S. A. (2011). Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models. Journal of Neural Engineering, 8(6), 065002.PubMedCentralPubMedCrossRef
Zurück zum Zitat Coggan, J. S., Prescott, S. A., Bartol, T. M., & Sejnowski, T. J. (2010). Imbalance of ionic conductances contributes to diverse symptoms of demyelination. Proceedings of the National Academy of Sciences of the United States of America, 107, 20602–20609.PubMedCentralPubMedCrossRef Coggan, J. S., Prescott, S. A., Bartol, T. M., & Sejnowski, T. J. (2010). Imbalance of ionic conductances contributes to diverse symptoms of demyelination. Proceedings of the National Academy of Sciences of the United States of America, 107, 20602–20609.PubMedCentralPubMedCrossRef
Zurück zum Zitat Gale, S. D., Johnson, S. C., Bigler, E. D., & Blatter, D. D. (1995). Non-specific white matter degeneration following traumatic brain injury. Journal International Neuropsychology Society, 1, 17–28.CrossRef Gale, S. D., Johnson, S. C., Bigler, E. D., & Blatter, D. D. (1995). Non-specific white matter degeneration following traumatic brain injury. Journal International Neuropsychology Society, 1, 17–28.CrossRef
Zurück zum Zitat Guskiewicz, K. M., McCrea, M., Marshall, S. W., Cantu, R. C., Randolph, C., Barr, W., et al. (2003). Cumulative effects associated with recurrent concussion in collegiate football players: The NCAA Concussion Study. JAMA, 290(19), 2549–2555.PubMedCrossRef Guskiewicz, K. M., McCrea, M., Marshall, S. W., Cantu, R. C., Randolph, C., Barr, W., et al. (2003). Cumulative effects associated with recurrent concussion in collegiate football players: The NCAA Concussion Study. JAMA, 290(19), 2549–2555.PubMedCrossRef
Zurück zum Zitat Gysland, S. M., Mihalik, J. P., Register-Mihalik, J. K., Trulock, S. C., Shields, E. W., & Guskiewicz, K. M. (2012). The relationship between subconcussive impacts and concussion history on clinical measures of neurologic function in collegiate football players. Annals of Biomedical Engineering, 40(1), 14–22.PubMedCrossRef Gysland, S. M., Mihalik, J. P., Register-Mihalik, J. K., Trulock, S. C., Shields, E. W., & Guskiewicz, K. M. (2012). The relationship between subconcussive impacts and concussion history on clinical measures of neurologic function in collegiate football players. Annals of Biomedical Engineering, 40(1), 14–22.PubMedCrossRef
Zurück zum Zitat Henry, L. C., Tremblay, J., Tremblay, S., Lee, A., Brun, C., Lepore, N., et al. (2011). Acute and chronic changes in diffusivity measures after sports concussion. Journal of Neurotrauma, 28, 2049–2059.PubMedCrossRef Henry, L. C., Tremblay, J., Tremblay, S., Lee, A., Brun, C., Lepore, N., et al. (2011). Acute and chronic changes in diffusivity measures after sports concussion. Journal of Neurotrauma, 28, 2049–2059.PubMedCrossRef
Zurück zum Zitat Hille, B. (2001). Ions channels of excitable membranes (3ed.). Sunderland: Sinauer. Hille, B. (2001). Ions channels of excitable membranes (3ed.). Sunderland: Sinauer.
Zurück zum Zitat Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRef Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRef
Zurück zum Zitat Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12, 995–1007.PubMedCrossRef Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12, 995–1007.PubMedCrossRef
Zurück zum Zitat Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMedCentralPubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMedCentralPubMed
Zurück zum Zitat Huff, T. B., Shi, Y., Sun, W., Wu, W., Shi, R., & Cheng, J. X. (2011). Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation. PloS One, 6(3), e17176.PubMedCentralPubMedCrossRef Huff, T. B., Shi, Y., Sun, W., Wu, W., Shi, R., & Cheng, J. X. (2011). Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation. PloS One, 6(3), e17176.PubMedCentralPubMedCrossRef
Zurück zum Zitat Iwata, A., Stys, P. K., Wolf, J. A., Chen, X. H., Taylor, A. G., Meaney, D. F., et al. (2004). Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. Journal of Neuroscience, 24(19), 4605–4613.PubMedCrossRef Iwata, A., Stys, P. K., Wolf, J. A., Chen, X. H., Taylor, A. G., Meaney, D. F., et al. (2004). Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. Journal of Neuroscience, 24(19), 4605–4613.PubMedCrossRef
Zurück zum Zitat Janigro, D., Gasparini, S., D’Ambrosio, R., McKhann, G., & DiFrancesco, D. (1997). Reduction of K + uptake in glia prevents long-term depression maintenance and causes epileptiform activity. Journal of Neuroscience, 17, 2813–2824.PubMedCentralPubMed Janigro, D., Gasparini, S., D’Ambrosio, R., McKhann, G., & DiFrancesco, D. (1997). Reduction of K + uptake in glia prevents long-term depression maintenance and causes epileptiform activity. Journal of Neuroscience, 17, 2813–2824.PubMedCentralPubMed
Zurück zum Zitat Kager, H., Wadman, W. J., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.PubMed Kager, H., Wadman, W. J., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.PubMed
Zurück zum Zitat Kontos, A. P., Kotwal, R. S., Elbin, R. J., Lutz, R. H., Forsten, R. D., Benson, P. J., et al. (2013). Residual effects of combat-related mild traumatic brain injury. Journal of Neurotrauma, 30, 680–686.PubMedCrossRef Kontos, A. P., Kotwal, R. S., Elbin, R. J., Lutz, R. H., Forsten, R. D., Benson, P. J., et al. (2013). Residual effects of combat-related mild traumatic brain injury. Journal of Neurotrauma, 30, 680–686.PubMedCrossRef
Zurück zum Zitat Krishnan, G. P., & Bazhenov, M. (2011). Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. Journal of Neuroscience, 31, 8870–8882.PubMedCentralPubMedCrossRef Krishnan, G. P., & Bazhenov, M. (2011). Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. Journal of Neuroscience, 31, 8870–8882.PubMedCentralPubMedCrossRef
Zurück zum Zitat Kutzelnigg, A., Lucchinetti, C. F., Stadelmann, C., Bruck, W., Rauschka, H., Bergmann, M., et al. (2005). Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain, 128(11), 2705–2712.PubMedCrossRef Kutzelnigg, A., Lucchinetti, C. F., Stadelmann, C., Bruck, W., Rauschka, H., Bergmann, M., et al. (2005). Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain, 128(11), 2705–2712.PubMedCrossRef
Zurück zum Zitat Lauger, P. (1991). Electrogenic ion pumps. Sunderland: Sinauer. Lauger, P. (1991). Electrogenic ion pumps. Sunderland: Sinauer.
Zurück zum Zitat Lopreore, C. L., Bartol, T. M., Coggan, J. S., Keller, D. X., Sosinsky, G. E., Ellisman, M. H., et al. (2008). Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. Biophysical Journal, 95(6), 2624–2635.PubMedCentralPubMedCrossRef Lopreore, C. L., Bartol, T. M., Coggan, J. S., Keller, D. X., Sosinsky, G. E., Ellisman, M. H., et al. (2008). Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. Biophysical Journal, 95(6), 2624–2635.PubMedCentralPubMedCrossRef
Zurück zum Zitat Maxwell, W. L. (1996). Histopathological changes at central nodes of Ranvier after stretch-injury. Microscopy Research and Technique, 34(6), 522–535.PubMedCrossRef Maxwell, W. L. (1996). Histopathological changes at central nodes of Ranvier after stretch-injury. Microscopy Research and Technique, 34(6), 522–535.PubMedCrossRef
Zurück zum Zitat McIntyre, C. C., Richardson, A. G., & Grill, W. M. (2002). Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. Journal of Neurophysiology, 87, 995–1006.PubMed McIntyre, C. C., Richardson, A. G., & Grill, W. M. (2002). Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. Journal of Neurophysiology, 87, 995–1006.PubMed
Zurück zum Zitat Moore, J. W., Joyner, R. W., Brill, M. H., Waxman, S. G., & Najar-Joa, M. (1978). Simulations of conduction in uniform myelinated fibers: relative sensitivity to changes in nodal and internodal parameters. Biophysical Journal, 21, 147–160.PubMedCentralPubMedCrossRef Moore, J. W., Joyner, R. W., Brill, M. H., Waxman, S. G., & Najar-Joa, M. (1978). Simulations of conduction in uniform myelinated fibers: relative sensitivity to changes in nodal and internodal parameters. Biophysical Journal, 21, 147–160.PubMedCentralPubMedCrossRef
Zurück zum Zitat Moran, O., & Mateu, L. (1983). Loosening of paranodal myelin by repetitive propagation of action potentials. Nature, 304(5924), 344–345.PubMedCrossRef Moran, O., & Mateu, L. (1983). Loosening of paranodal myelin by repetitive propagation of action potentials. Nature, 304(5924), 344–345.PubMedCrossRef
Zurück zum Zitat Nashmi, R., & Fehlings, M. G. (2001). Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Research Reviews, 38, 165–191.PubMedCrossRef Nashmi, R., & Fehlings, M. G. (2001). Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Research Reviews, 38, 165–191.PubMedCrossRef
Zurück zum Zitat Ng, H. K., Mahaliyana, R. D., & Poon, W. S. (1994). The pathological spectrum of diffuse axonal injury in blunt head trauma: assessment with axon and myelin strains. Clinical Neurology and Neurosurgery, 96, 24–31.PubMedCrossRef Ng, H. K., Mahaliyana, R. D., & Poon, W. S. (1994). The pathological spectrum of diffuse axonal injury in blunt head trauma: assessment with axon and myelin strains. Clinical Neurology and Neurosurgery, 96, 24–31.PubMedCrossRef
Zurück zum Zitat Nikolaeva, M. A., Mukherjee, B., & Stys, P. K. (2005). Na+ dependent source of intra-axonal Ca2+ release in rat optic nerve during in vitro chemical ischemia. Journal of Neuroscience, 25(43), 9960–9967.PubMedCrossRef Nikolaeva, M. A., Mukherjee, B., & Stys, P. K. (2005). Na+ dependent source of intra-axonal Ca2+ release in rat optic nerve during in vitro chemical ischemia. Journal of Neuroscience, 25(43), 9960–9967.PubMedCrossRef
Zurück zum Zitat Ouyang, H., Sun, W., Fu, Y., Li, J., Cheng, J. X., Nauman, E., et al. (2010). Compression induces acute demyelination and potassium channel exposure in spinal cord. Journal of Neurotrauma, 27, 1109–1120.PubMedCentralPubMedCrossRef Ouyang, H., Sun, W., Fu, Y., Li, J., Cheng, J. X., Nauman, E., et al. (2010). Compression induces acute demyelination and potassium channel exposure in spinal cord. Journal of Neurotrauma, 27, 1109–1120.PubMedCentralPubMedCrossRef
Zurück zum Zitat Poliak, S., & Peles, E. (2003). The local differentiation of myelinated axons at nodes of Ranvier. Nature Reviews Neuroscience, 4, 968–980.PubMedCrossRef Poliak, S., & Peles, E. (2003). The local differentiation of myelinated axons at nodes of Ranvier. Nature Reviews Neuroscience, 4, 968–980.PubMedCrossRef
Zurück zum Zitat Poliak, S., Salomon, D., Elhanany, H., Sabanay, H., Kiernan, B., Pevny, L., et al. (2003). Juxtaparanodal clustering of Shaker-like K + channels in myelinated axons depends on Caspr2 and TAG-1. Journal of Cell Biology, 162, 1149–1160.PubMedCentralPubMedCrossRef Poliak, S., Salomon, D., Elhanany, H., Sabanay, H., Kiernan, B., Pevny, L., et al. (2003). Juxtaparanodal clustering of Shaker-like K + channels in myelinated axons depends on Caspr2 and TAG-1. Journal of Cell Biology, 162, 1149–1160.PubMedCentralPubMedCrossRef
Zurück zum Zitat Rasband, M. N., & Trimmer, J. S. (2001). Developmental clustering of ion channels at and near the node of Ranvier. Developmental Biology, 236, 5–16.PubMedCrossRef Rasband, M. N., & Trimmer, J. S. (2001). Developmental clustering of ion channels at and near the node of Ranvier. Developmental Biology, 236, 5–16.PubMedCrossRef
Zurück zum Zitat Reeves, T. M., Greer, J. E., Vanderveer, A. S., & Phillips, L. L. (2010). Proteolysis of submembrane cytoskeletal proteins ankyrin-G and aII-spectrin following diffuse brain injury: a role in white matter vulnerability at nodes of Ranvier. Brain Pathology, 20(6), 1055–1068.PubMedCentralPubMedCrossRef Reeves, T. M., Greer, J. E., Vanderveer, A. S., & Phillips, L. L. (2010). Proteolysis of submembrane cytoskeletal proteins ankyrin-G and aII-spectrin following diffuse brain injury: a role in white matter vulnerability at nodes of Ranvier. Brain Pathology, 20(6), 1055–1068.PubMedCentralPubMedCrossRef
Zurück zum Zitat Shenton, M. E., Hamoda, H. M., Schneiderman, J. S., Bouix, S., Pasternak, O., Rathi, Y., et al. (2012). A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging and Behavior, 6(2), 137–192.PubMedCentralPubMedCrossRef Shenton, M. E., Hamoda, H. M., Schneiderman, J. S., Bouix, S., Pasternak, O., Rathi, Y., et al. (2012). A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging and Behavior, 6(2), 137–192.PubMedCentralPubMedCrossRef
Zurück zum Zitat Shi, R., & Blight, A. R. (1996). Compression injury of mammalian spinal cord in vitro and the dynamics of action potential conduction failure. Journal of Neurophysiology, 76(3), 1572–1580.PubMed Shi, R., & Blight, A. R. (1996). Compression injury of mammalian spinal cord in vitro and the dynamics of action potential conduction failure. Journal of Neurophysiology, 76(3), 1572–1580.PubMed
Zurück zum Zitat Shi, R., & Pryor, J. D. (2002). Pathological changes of isolated spinal cord axons in response to mechanical stretch. Neuroscience, 110(4), 765–777.PubMedCrossRef Shi, R., & Pryor, J. D. (2002). Pathological changes of isolated spinal cord axons in response to mechanical stretch. Neuroscience, 110(4), 765–777.PubMedCrossRef
Zurück zum Zitat Shi, R., & Whitebone, J. (2006). Conduction deficits and membrane disruption of spinal cord axons as a function of magnitude and rate of strain. Journal of Neurophysiology, 95, 3384–3390.PubMedCrossRef Shi, R., & Whitebone, J. (2006). Conduction deficits and membrane disruption of spinal cord axons as a function of magnitude and rate of strain. Journal of Neurophysiology, 95, 3384–3390.PubMedCrossRef
Zurück zum Zitat Southwood, C., He, C., Garbern, J., Kamholz, J., Arroyo, E., & Gow, A. (2004). CNS myelin paranodes require Nkx6-2 homeoprotein transcriptional activity for normal structure. Journal of Neuroscience, 24, 11215–11225.PubMedCrossRef Southwood, C., He, C., Garbern, J., Kamholz, J., Arroyo, E., & Gow, A. (2004). CNS myelin paranodes require Nkx6-2 homeoprotein transcriptional activity for normal structure. Journal of Neuroscience, 24, 11215–11225.PubMedCrossRef
Zurück zum Zitat Staal, J. A., Dickson, T. C., Gasperini, R., Liu, Y., Foa, L., & Vickers, J. C. (2010). Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. Journal of Neurochemistry, 112, 1147–1155.PubMedCrossRef Staal, J. A., Dickson, T. C., Gasperini, R., Liu, Y., Foa, L., & Vickers, J. C. (2010). Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. Journal of Neurochemistry, 112, 1147–1155.PubMedCrossRef
Zurück zum Zitat Steffensen, I., Waxman, S. G., Mills, L., & Stys, P. K. (1997). Immunolocalization of the Na + −Ca2+ exchanger in mammalian myelinated axons. Brain Research, 776(1–2), 1–9.PubMedCrossRef Steffensen, I., Waxman, S. G., Mills, L., & Stys, P. K. (1997). Immunolocalization of the Na + −Ca2+ exchanger in mammalian myelinated axons. Brain Research, 776(1–2), 1–9.PubMedCrossRef
Zurück zum Zitat Stephanova, D. I., & Bostock, H. (1995). A distributed-parameter model of the myelinated human motor nerve fibre: temporal and spatial distributions of action potentials and ionic currents. Biological Cybernetics, 73(3), 275–280.PubMedCrossRef Stephanova, D. I., & Bostock, H. (1995). A distributed-parameter model of the myelinated human motor nerve fibre: temporal and spatial distributions of action potentials and ionic currents. Biological Cybernetics, 73(3), 275–280.PubMedCrossRef
Zurück zum Zitat Stephanova, D. I., & Chobanova, M. (1997). Action potentials and ionic currents through paranodally demyelinated human motor nerve fibres: computer simulations. Biological Cybernetics, 76(4), 311–314.PubMedCrossRef Stephanova, D. I., & Chobanova, M. (1997). Action potentials and ionic currents through paranodally demyelinated human motor nerve fibres: computer simulations. Biological Cybernetics, 76(4), 311–314.PubMedCrossRef
Zurück zum Zitat Stephanova, D. I., & Daskalova, M. (2005a). Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part II. Paranodal demyelination. Clinical Neurophysiology, 116(5), 1159–1166.PubMedCrossRef Stephanova, D. I., & Daskalova, M. (2005a). Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part II. Paranodal demyelination. Clinical Neurophysiology, 116(5), 1159–1166.PubMedCrossRef
Zurück zum Zitat Stephanova, D. I., & Daskalova, M. (2005b). Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part III. Paranodal internodal demyelination. Clinical Neurophysiology, 116(10), 2334–2341.PubMedCrossRef Stephanova, D. I., & Daskalova, M. (2005b). Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part III. Paranodal internodal demyelination. Clinical Neurophysiology, 116(10), 2334–2341.PubMedCrossRef
Zurück zum Zitat Stephanova, D. I., & Daskalova, M. (2008). Membrane property abnormalities in simulated cases of mild systematic and severe focal demyelinating neuropathies. European Biophysics Journal, 37(2), 183–195.PubMedCrossRef Stephanova, D. I., & Daskalova, M. (2008). Membrane property abnormalities in simulated cases of mild systematic and severe focal demyelinating neuropathies. European Biophysics Journal, 37(2), 183–195.PubMedCrossRef
Zurück zum Zitat Stephanova, D. I., Daskalova, M., & Alexandrov, A. S. (2005). Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part I. Clinical Neurophysiology, 116(5), 1153–1158.PubMedCrossRef Stephanova, D. I., Daskalova, M., & Alexandrov, A. S. (2005). Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part I. Clinical Neurophysiology, 116(5), 1153–1158.PubMedCrossRef
Zurück zum Zitat Stephanova, D. I., & Mileva, K. (2000). Different effects of blocked potassium channels on action potentials, accommodation, adaptation and anode break excitation in human motor and sensory myelinated nerve fibres: computer simulations. Biological Cybernetics, 83(2), 161–167.PubMedCrossRef Stephanova, D. I., & Mileva, K. (2000). Different effects of blocked potassium channels on action potentials, accommodation, adaptation and anode break excitation in human motor and sensory myelinated nerve fibres: computer simulations. Biological Cybernetics, 83(2), 161–167.PubMedCrossRef
Zurück zum Zitat Stys, P. K. (1998). Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics. Journal Cerebral Blood Flow Metabolism, 18(1), 2–25.CrossRef Stys, P. K. (1998). Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics. Journal Cerebral Blood Flow Metabolism, 18(1), 2–25.CrossRef
Zurück zum Zitat Stys, P. K. (2005). General mechanisms of axonal damage and its prevention. Journal of the Neurological Sciences, 233(1–2), 3–13.PubMedCrossRef Stys, P. K. (2005). General mechanisms of axonal damage and its prevention. Journal of the Neurological Sciences, 233(1–2), 3–13.PubMedCrossRef
Zurück zum Zitat Stys, P. K., & Steffensen, I. (1996). Na+-Ca2+ exchange in anoxic/ischemic injury of CNS myelinated axons. Annals New York Academy Science, 779, 366–378.CrossRef Stys, P. K., & Steffensen, I. (1996). Na+-Ca2+ exchange in anoxic/ischemic injury of CNS myelinated axons. Annals New York Academy Science, 779, 366–378.CrossRef
Zurück zum Zitat Sun, W., Fu, Y., Shi, Y., Cheng, J. X., Cao, P., & Shi, R. (2012). Paranodal myelin damage after acute stretch in guinea pig spinal cord. Journal of Neurotrauma, 29, 611–619.PubMedCentralPubMedCrossRef Sun, W., Fu, Y., Shi, Y., Cheng, J. X., Cao, P., & Shi, R. (2012). Paranodal myelin damage after acute stretch in guinea pig spinal cord. Journal of Neurotrauma, 29, 611–619.PubMedCentralPubMedCrossRef
Zurück zum Zitat Sun, W., Smith, D., Fu, Y., Cheng, J. X., Bryn, S., Borgens, R., et al. (2010). Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter. Journal of Neurophysiology, 103, 469–478.PubMedCrossRef Sun, W., Smith, D., Fu, Y., Cheng, J. X., Bryn, S., Borgens, R., et al. (2010). Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter. Journal of Neurophysiology, 103, 469–478.PubMedCrossRef
Zurück zum Zitat Vabnick, I., & Shrager, P. (1998). Ion channel redistribution and function during development of the myelinated axon. Journal of Neurobiology, 37, 80–96.PubMedCrossRef Vabnick, I., & Shrager, P. (1998). Ion channel redistribution and function during development of the myelinated axon. Journal of Neurobiology, 37, 80–96.PubMedCrossRef
Zurück zum Zitat Volman, V., Bazhenov, M., & Sejnowski, T. J. (2012). Computational models of neuron-astrocyte interaction in epilepsy. Frontiers in Computational Neuroscience, 6(58), 1–10. Volman, V., Bazhenov, M., & Sejnowski, T. J. (2012). Computational models of neuron-astrocyte interaction in epilepsy. Frontiers in Computational Neuroscience, 6(58), 1–10.
Zurück zum Zitat Volman, V., & Ng, L. J. (2013). Computer modeling of mild axonal injury: implications for axonal signal transmission. Neural Computation, 25(10), 2646–2681.PubMedCrossRef Volman, V., & Ng, L. J. (2013). Computer modeling of mild axonal injury: implications for axonal signal transmission. Neural Computation, 25(10), 2646–2681.PubMedCrossRef
Zurück zum Zitat von Reyn, C. R., Spaethling, J. M., Mesfin, M. N., Ma, M., Neumar, R. W., Smith, D. H., et al. (2009). Calpain mediates proteolysis of the voltage-gated sodium channel a-subunit. Journal of Neuroscience, 29(33), 10350–10356.CrossRef von Reyn, C. R., Spaethling, J. M., Mesfin, M. N., Ma, M., Neumar, R. W., Smith, D. H., et al. (2009). Calpain mediates proteolysis of the voltage-gated sodium channel a-subunit. Journal of Neuroscience, 29(33), 10350–10356.CrossRef
Zurück zum Zitat Waxman, S. G., & Bennett, M. V. L. (1972). Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system. Nature - New Biology, 238, 217–219.PubMedCrossRef Waxman, S. G., & Bennett, M. V. L. (1972). Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system. Nature - New Biology, 238, 217–219.PubMedCrossRef
Zurück zum Zitat Wolf, J. A., Stys, P. K., Lusardi, T., Meaney, D. F., & Smith, D. H. (2001). Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. Journal of Neuroscience, 21(6), 1923–1930.PubMed Wolf, J. A., Stys, P. K., Lusardi, T., Meaney, D. F., & Smith, D. H. (2001). Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. Journal of Neuroscience, 21(6), 1923–1930.PubMed
Zurück zum Zitat Zeng, S., & Jung, P. (2008). Simulation analysis of internodal sodium channel function. Physical Review E, 78, 061916.CrossRef Zeng, S., & Jung, P. (2008). Simulation analysis of internodal sodium channel function. Physical Review E, 78, 061916.CrossRef
Metadaten
Titel
Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury
verfasst von
Vladislav Volman
Laurel J. Ng
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-014-0515-7

Weitere Artikel der Ausgabe 3/2014

Journal of Computational Neuroscience 3/2014 Zur Ausgabe