Skip to main content
Log in

Domain wall contributions to the properties of piezoelectric thin films

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In bulk ferroelectric ceramics, extrinsic contributions associated with motion of domain walls and phase boundaries are a significant component of the measured dielectric and piezoelectric response. In thin films, the small grain sizes, substantial residual stresses, and the high concentration of point and line defects change the relative mobility of these boundaries. One of the consequences of this is that thin films typically act as hard piezoelectrics. This paper reviews the literature in this field, emphasizing the difference between the nonlinearities observed in the dielectric and piezoelectric properties of films. The effect of ac field excitation levels, dc bias fields, temperature, and applied mechanical stress are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. J.L. Jones, M. Hoffman, J.E. Daniels, A.J. Studer, Appl. Phys. Lett. 89, 092901 (2006)

    Article  Google Scholar 

  2. D.A. Hall, J. Mater. Sci. 36, 4575 (2001)

    Article  CAS  Google Scholar 

  3. D.V. Taylor, D. Damjanovic, J. Appl. Phys. 82, 1973 (1997)

    Article  CAS  Google Scholar 

  4. D.V. Taylor, D. Damjanovic, Appl. Phys. Lett. 73, 2045 (1998)

    Article  CAS  Google Scholar 

  5. D.V. Taylor, D. Damjanovic, N. Setter, Ferroelectrics 224, 299 (1999)

    Article  Google Scholar 

  6. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, 1977)

    Google Scholar 

  7. S. Stemmer, S.K. Streiffer, F. Ernst, M. Rühle, Philos. Mag., A 71, 713 (1995)

    Article  CAS  Google Scholar 

  8. R. Herbiet, U. Robels, H. Dederichs, G. Arlt, Ferroelectrics 98, 107 (1989)

    CAS  Google Scholar 

  9. An American National Standard IEEE Standard Definitions of Terms Associated with Ferroelectric and Related Materials, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1 (2003)

    Google Scholar 

  10. S. Li, W. Cao, L.E. Cross, J. Appl. Phys. 69, 7219 (1991)

    Article  CAS  Google Scholar 

  11. L. Chen, V. Nagarajan, R. Ramesh, A.L. Roytburd, J. Appl. Phys. 94, 5147 (2003)

    Article  CAS  Google Scholar 

  12. M. Budimir, D. Damjanovic, N. Setter, Appl. Phys. Lett. 85, 2890 (2004)

    Article  CAS  Google Scholar 

  13. L. Rayleigh, Philos. Mag. 23, 225 (1887)

    Google Scholar 

  14. L. Néel, Cah. Phys. 12, 1 (1942)

    Google Scholar 

  15. D. Damjanovic, in Hysteresis in Piezoelectric and Ferroelectric Materials, eds. by G. Bertotti, I. Mayergoyz. Science of Hysteresis, vol III (Elsevier, 2005), p. 337

  16. F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z.L. Xie, K.J. Hemker, J. Appl. Phys. 89, 1336 (2001)

    Article  CAS  Google Scholar 

  17. D. Damjanovic, J. Appl. Phys. 82, 1788 (1997)

    Article  CAS  Google Scholar 

  18. M. Davis, D. Damjanovic, N. Setter, J. Appl. Phys. 100(8), 084103 (2006)

    Google Scholar 

  19. J.E. García, R. Pérez, A. Albareda, J. Phys., Condens. Matter 17, 7143 (2005)

    Article  Google Scholar 

  20. H. Kronmüller, Z. Angew. Phys. 30, 9 (1970)

    Google Scholar 

  21. G. Robert, D. Damjanovic, N. Setter, A.V. Turik, J. Appl. Phys. 89, 5067 (2001)

    Article  CAS  Google Scholar 

  22. G. Robert, D. Damjanovic, N. Setter, J. Appl. Phys. 90, 2459 (2001)

    Article  CAS  Google Scholar 

  23. G. Arlt, H. Dederichs, R. Herbeit, Ferroelectrics 74, 37 (1987)

    CAS  Google Scholar 

  24. M. Morozov, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 25, 2483 (2005)

    Article  CAS  Google Scholar 

  25. G. Robert, D. Damjanovic, N. Setter, J. Appl. Phys. 90, 4668 (2001)

    Article  CAS  Google Scholar 

  26. D. Damjanovic, M. Demartin, J. Phys., Condens. Matter 9, 4943 (1997)

    Article  CAS  Google Scholar 

  27. L.X. Zhang, X.B. Ren, Phys. Rev., B 73, 094121 (2006)

    Article  Google Scholar 

  28. U. Robels, G. Arlt, J. Appl. Phys. 73, 3454 (1993)

    Article  CAS  Google Scholar 

  29. O. Boser, J. Appl. Phys. 62, 1344 (1987)

    Article  CAS  Google Scholar 

  30. H.J. Hagemann, J. Phys. C. Solid State Phys. 11, 3333 (1978)

    Article  CAS  Google Scholar 

  31. L. Sagalowicz, F. Chu, P. Duran Martin, D. Damjanovic, J. Appl. Phys. 88, 7258 (2000)

    Article  CAS  Google Scholar 

  32. M. Davis, D. Damjanovic, N. Setter, (unpublished) (2006)

  33. T.M. Shaw, S. Trolier-McKinstry, P.C. McIntyre, Annu. Rev. Mater. Sci. 30, 263 (2000)

    Article  CAS  Google Scholar 

  34. W. Cao, C. Randall, J. Phys. Chem. Solids 57, 1499 (1996)

    Article  CAS  Google Scholar 

  35. G. Arlt, N.A. Pertsev, J. Appl. Phys. 70, 2283 (1991)

    Article  Google Scholar 

  36. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic, re-printed in India, 1971)

  37. A.Y. Emelyanov, N.A. Pertsev, Phys. Rev., B 68, 214103 (2003)

    Article  Google Scholar 

  38. V.G. Koukhar, N.A. Pertsev, R. Waser, Phys. Rev., B 64, 214103 (2001)

    Article  Google Scholar 

  39. B.A. Tuttle, T.J. Garino, J.A. Voight, T.J. Headley, D. Dimos, M.O. Eatough. in Science and Technology of Electroceramic Thin Films, eds. by O. Auciello, R. Waser (Kluwer, The Netherlands, 1995), pp. 117–1132

    Google Scholar 

  40. K.S. Lee, Y.K. Kim, S. Baik, J. Kim, I.S. Jung, Appl. Phys. Lett. 79, 2444 (2001)

    Article  CAS  Google Scholar 

  41. M.B. Kelman, P.C. McIntyre, B.C. Hendrix, S.M. Bilodeau, J.F. Roeder, J. Appl. Phys. 93, 9231 (2003)

    Article  CAS  Google Scholar 

  42. J.F. Shepard Jr., F. Chu, B. Xu, S. Trolier-McKinstry, in MRS Proc.: Ferroelectric Thin Films VI 493, 69 (1998)

  43. N. Bassiri Gharb, P. Muralt, S. Trolier McKinstry, in Proceedings 14th IEEE Int. Symp. Appl. Ferroelectrics, 95 (2004)

  44. Z. Zhang, J.-H. Park, S. Trolier-McKinstry, MRS. Proc. Ferroelectric Thin Films VIII, eds. by R.W. Schwartz, P.C. McIntyre, Y. Miyasaka, S.R. Summerfelt, D. Wouters, vol. 596 (Materials Research Society, Warrendale, PA, 2000), pp. 73–77

  45. F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, J. Appl. Phys. 89, 1336 (2001)

    Article  CAS  Google Scholar 

  46. S. Trolier-McKinstry, J.F. Shepard Jr., J.L. Lacey, T. Su, G. Zavala, J. Fendler, Ferroelectrics 206–207, 381 (1998)

    Article  Google Scholar 

  47. A.L. Kholkin, K.G. Brooks, N. Setter, Appl. Phys. Lett. 71, 2044 (1997)

    Article  CAS  Google Scholar 

  48. N.A. Pertsev, A.Y. Emelyanov, Appl. Phys. Lett. 71, 3646 (1997)

    Article  CAS  Google Scholar 

  49. G. Bertotti, Hysteresis in Magnetism (Academic, San Diego, 1998)

    Google Scholar 

  50. J.E. Garcia, R. Perez, A. Albareda, J. Phys., D. Appl. Phys. 34, 3279 (2001)

    Article  CAS  Google Scholar 

  51. H.H.A. Krueger, J. Acoust. Soc. Am. 42, 636 (1967)

    Article  CAS  Google Scholar 

  52. D. Damjanovic, S.S.N. Bharadwaja, N. Setter, Mater. Sci. Eng., B 120, 170 (2005)

    Article  Google Scholar 

  53. Z. Kighelman, D. Damjanovic, M. Cantoni, N. Setter, J. Appl. Phys. 91, 1495 (2002)

    Article  CAS  Google Scholar 

  54. K.M. Johnson, J. Appl. Phys. 33, 2826 (1962)

    Article  Google Scholar 

  55. C. Ang, Z. Yu, Appl. Phys. Lett. 85, 3821 (2004)

    Article  CAS  Google Scholar 

  56. C. Ang, Z. Yu, Phys. Rev., B 69, 174109 (2004)

    Article  Google Scholar 

  57. R.A. Wolf, S. Trolier-McKinstry, J. Appl. Phys. 95, 1397 (2004)

    Article  CAS  Google Scholar 

  58. E. Hong, R. Smith, S.V. Krishnaswamy, C.B. Freidhoff, S. Trolier-McKinstry, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 697 (2006)

    Google Scholar 

  59. X.L. Zhang, Z.X. Chen, L.E. Cross, W.A. Schulze, J. Mater. Sci. 18, 968 (1983)

    Article  CAS  Google Scholar 

  60. N. Bassiri Gharb, S. Trolier-McKinstry, J. Appl. Phys. 97, 064106 (2005)

    Article  Google Scholar 

  61. D.A. Hall, M.M. Ben-Omran, J. Phys., Condens. Matter 10, 9129 (1998)

    Article  CAS  Google Scholar 

  62. S.-M. Nam, Y.-B. Kil, S. Wada, T. Tsurumi, Jpn. J. Appl. Phys. 42, L1519 (2003)

    Article  CAS  Google Scholar 

  63. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999)

    Article  CAS  Google Scholar 

  64. Y. Lu, D.-Y. Jeong, Z.-Y. Cheng, Q.M. Zhang, H.S. Luo, Z.Y. Yin, D. Viehland, Appl. Phys. Lett. 78, 3109 (2001)

    Article  CAS  Google Scholar 

  65. Y. Guo, H. Luo, T. He, H. Xu, Z. Yin, Jpn. J. Appl. Phys. 41, 1 (2000)

    Google Scholar 

  66. K. Fujishiro, R. Vlokh, Y. Uesu, Y. Yamada, J.-M. Kiat, B. Dkhil, Y. Yamashita, Jpn. J. Appl. Phys. 37, 5246 (1998)

    Article  CAS  Google Scholar 

  67. M.K. Durbin, J.C. Hicks, S.-E. Park, T.R. Shrout, J. Appl. Phys. 87, 8159 (2000)

    Article  CAS  Google Scholar 

  68. R.E. Eitel, S.J. Zhang, T.R. Shrout, C.A. Randall, I. Levin, J. Appl. Phys. 96, 2828 (2004)

    Article  CAS  Google Scholar 

  69. H. Zheng, I.M. Reaney, W.E. Lee, H. Thomas, N. Jones, J. Am. Ceram. Soc. 85, 2337 (2002)

    Article  CAS  Google Scholar 

  70. S. Zhang, P.W. Rehrig, C. Randall, T.R. Shrout, J. Cryst. Growth 234, 415 (2002)

    Article  CAS  Google Scholar 

  71. A. Laha, S.B. Krupanidhi, Mater. Sci. Eng., B 113, 190 (2004)

    Article  Google Scholar 

  72. A.L. Kholkin, M.L. Calzada, P. Ramos, J. Mendiola, N. Setter, Appl. Phys. Lett. 69, 3602 (1996)

    Article  CAS  Google Scholar 

  73. S. Trolier-McKinstry, N. Bassiri Gharb, D. Damjanovic, Appl. Phys. Lett. 88, 202901 (2006)

    Article  Google Scholar 

  74. N. Bassiri Gharb, S. Trolier-McKinstry, D. Damjanovic, J. Appl. Phys. 100, 044107 (2006)

    Article  Google Scholar 

  75. T. Tagantsev, P. Muralt, J. Fousek, Mater. Res. Soc. Symp. Proc. 784, 517 (2004) (C10.6.1)

    Google Scholar 

  76. D. Damjanovic, J. Am. Ceram. Soc. 88, 2663 (2005)

    Article  CAS  Google Scholar 

  77. M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, Ferroelectrics 99, 63 (1989)

    CAS  Google Scholar 

  78. D.V. Taylor, D. Damjanovic, Appl. Phys. Lett. 76, 1615 (2000)

    Article  CAS  Google Scholar 

  79. M. Davis, D. Damjanovic, D. Hayem, N. Setter, J. Appl. Phys. 98, 014102 (2005)

    Article  Google Scholar 

  80. S. Wada, S. Suzuki, T. Noma, T. Suzuki, M. Osada, M. Kakihana, S.-E. Park, L.E. Cross, T.R. Shrout, Jpn. J. Appl. Phys. 38, 5505 (1999)

    Article  CAS  Google Scholar 

  81. N. Setter, D. Damjanovic, L. Eng et al., J. Appl. Phys. 100, 051606 (2006)

  82. Y. Zhang, I.S. Baturin, E. Aulbach, D.C. Lupascu, A.L. Kholkin, Y.V. Shur, J. Rödel, Appl. Phys. Lett. 86, 012910 (2005)

    Article  Google Scholar 

  83. S. Yokoyama, Y. Honda, H. Morioka, S. Okamoto, H. Funakubo, T. Iijima, H. Matsuda, K. Saito, T. Yamamoto, H. Okino, O. Sakata, S. Kimura, J. Appl. Phys. 98, 094106 (2005)

    Article  Google Scholar 

  84. H.H.A. Krutger, “Stress sensitivity of piezoelectric ceramics: Part 1. Sensitivity to compressive stress parallel to the polar axis,” Technical publication TP-242-1: Stress sensitivity of piezoelectric ceramics, Morgan Electro Ceramics; http://www.morganelectroceramics.com/techpub1.html

  85. E.L. Colla, D.V. Taylor, A.K. Tagantsev, N. Setter, Appl. Phys. Lett. 72, 2478 (1998)

    Article  CAS  Google Scholar 

  86. A.L. Kholkin, E.L. Colla, A.K. Tagantsev, D.V. Taylor, Appl. Phys. Lett. 68, 2577 (1996)

    Article  CAS  Google Scholar 

  87. M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 102904 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research (grant N00014-96-C-0387), the National Science Foundation (through grants DMR-0213623, DMR-0313764, and DMR-0602770), and the Center for Dielectric Studies at the Pennsylvania State University (STM); and the Swiss National Science Foundation (DD). The authors also gratefully acknowledge that some substrates were provided by Dr. P. Muralt (EPFL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazanin Bassiri-Gharb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassiri-Gharb, N., Fujii, I., Hong, E. et al. Domain wall contributions to the properties of piezoelectric thin films. J Electroceram 19, 49–67 (2007). https://doi.org/10.1007/s10832-007-9001-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9001-1

Keywords

Navigation