Skip to main content
Erschienen in: Journal of Electroceramics 2/2008

01.04.2008

Electrical properties of PZT piezoelectric ceramic at high temperatures

verfasst von: Z. Gubinyi, C. Batur, A. Sayir, F. Dynys

Erschienen in: Journal of Electroceramics | Ausgabe 2/2008

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Advanced aeronautic and space structures need active components that can function at high frequencies and temperatures. Piezoelectric materials can provide frequency response but their use at elevated temperatures is limited. The reason for the lack of insertion of piezoelectric for high temperature active component and sensors are two fold. First, the database of piezoelectric properties that describe the piezoelectric constants is lacking for high temperatures engineering applications. Most studies measure the dielectric constants to determine the Curie temperature but do not provide piezoelectric coefficients as a function of temperature. Second, piezoelectric materials with Curie temperature (T C) exceeding 500 °C are sought for aeronautics and aerospace applications. This investigation describes a measurement system that captures the impedance dependence upon temperature for piezoelectric materials. Commercially available lead zirconate titanate (PZT) was studied as to determine the piezoelectric activity to define the operating envelope with respect to temperature. The elastic properties \(\left( {c_{ijkl}^E } \right)\), piezoelectric coefficients \(\left( {e _{ik}^S } \right)\), dielectric properties \(\left( {\varepsilon _{ik}^S } \right)\), and electro-mechanical coupling factors were determined as a function of temperature. The coupling factor k 33 was found to be relatively constant to 200 °C and exhibit slight temperature dependence above 200 °C. The temperature sensitivity for both piezoelectric coefficient and electromechanical coupling factor were very small; the slopes \({{\Delta d_{31}^T } \mathord{\left/ {\vphantom {{\Delta d_{31}^T } {d_{31}^T }}} \right. \kern-\nulldelimiterspace} {d_{31}^T }}\) and Δk 33/k 33 were found to be 0.01 and (−0.07) respectively in the range of 120 to 200 °C. This measurement technique will populate databases that describe the piezoelectric properties of commercially available PZT piezoelectric materials. It can also facilitate the assessment of new piezoelectric materials that are currently being developed for higher temperature applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat H.F. Tiersten, Linear Piezoelectric Plate Vibrations (Plenum, New York, 1969) H.F. Tiersten, Linear Piezoelectric Plate Vibrations (Plenum, New York, 1969)
2.
Zurück zum Zitat IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987. (The Institute of Electrical and Electronics Engineer, 1988) IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987. (The Institute of Electrical and Electronics Engineer, 1988)
3.
Zurück zum Zitat J.W. Waanders, Piezoelectric Ceramics Properties and Applications, 1st edn. (Philips Components, Eidenhoven, Netherlands, 1991) J.W. Waanders, Piezoelectric Ceramics Properties and Applications, 1st edn. (Philips Components, Eidenhoven, Netherlands, 1991)
4.
Zurück zum Zitat S. Sherrit, X. Bao, Y. Bar-Cohen, Z. Chang, Resonance Analysis of High Temperature Piezoelectric Materials for Actuation and Sensing, Paper 5387-58, Proceedings of the SPIE Smart Structures Conference San Diego, CA., Mar 14–18. 2004, SPIE Vol. 5387 S. Sherrit, X. Bao, Y. Bar-Cohen, Z. Chang, Resonance Analysis of High Temperature Piezoelectric Materials for Actuation and Sensing, Paper 5387-58, Proceedings of the SPIE Smart Structures Conference San Diego, CA., Mar 14–18. 2004, SPIE Vol. 5387
5.
Zurück zum Zitat A.H. Meitzler, H.M. O’Bryan Jr., H.F. Tiersten, Definition and Measurement of radial Mode Coupling Factors in Piezoelectric Ceramic Materials with Large Variations in Poisson’s Ratio. IEEE Transactions on Sonics and Ultrasonics, SU-20, July 1973, pp 233–239 A.H. Meitzler, H.M. O’Bryan Jr., H.F. Tiersten, Definition and Measurement of radial Mode Coupling Factors in Piezoelectric Ceramic Materials with Large Variations in Poisson’s Ratio. IEEE Transactions on Sonics and Ultrasonics, SU-20, July 1973, pp 233–239
6.
Zurück zum Zitat T.L. Jordan, Z. Ounaies, Piezoelectric Ceramics Characterization NASA/ CR-2001-211225 ICASE report to NASA Langley Research Center. Report No. 2001-28, September 2001 T.L. Jordan, Z. Ounaies, Piezoelectric Ceramics Characterization NASA/ CR-2001-211225 ICASE report to NASA Langley Research Center. Report No. 2001-28, September 2001
7.
Zurück zum Zitat Agilent, 4294A Precision Impedance Analyzer Operation Manual, 6th edn. (Agilent Technologies Japan, Ltd. Kobe Instrument Division, Part No. 04294-90050, November 2002) Agilent, 4294A Precision Impedance Analyzer Operation Manual, 6th edn. (Agilent Technologies Japan, Ltd. Kobe Instrument Division, Part No. 04294-90050, November 2002)
10.
Zurück zum Zitat K. Okada, T. Sekino, Agilent Technologies Impedance Measurement Handbook, December 2003 K. Okada, T. Sekino, Agilent Technologies Impedance Measurement Handbook, December 2003
11.
Zurück zum Zitat J. Kocbach, Finite Element Modeling of Ultrasonic Piezoelectric Transducers; Influence of Geometry and Material Parameters on Vibration, Response Functions and Radiated Field, PhD Dissertation, the University of Bergen Department of Physics, September 2000 J. Kocbach, Finite Element Modeling of Ultrasonic Piezoelectric Transducers; Influence of Geometry and Material Parameters on Vibration, Response Functions and Radiated Field, PhD Dissertation, the University of Bergen Department of Physics, September 2000
12.
Zurück zum Zitat B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971) B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)
14.
Zurück zum Zitat Y. Xi, C. Zhili, L.E. Cross, J. Appl. Phys. 54(6), 3399–3403 (1983)CrossRef Y. Xi, C. Zhili, L.E. Cross, J. Appl. Phys. 54(6), 3399–3403 (1983)CrossRef
15.
Zurück zum Zitat S. Zhang, D.-Y. Jeong, Q. Zhang, T.R. Shrout, J. Cryst. Growth 247, 131–136 (2003)CrossRef S. Zhang, D.-Y. Jeong, Q. Zhang, T.R. Shrout, J. Cryst. Growth 247, 131–136 (2003)CrossRef
16.
Zurück zum Zitat D. Damjanovic, R.E. Newnham, J. Intell. Mater. Syst. Struct. 3, 190–208 (1992)CrossRef D. Damjanovic, R.E. Newnham, J. Intell. Mater. Syst. Struct. 3, 190–208 (1992)CrossRef
17.
Zurück zum Zitat S. Sherrit, G. Yang, H.D. Wiederick, B.K. Mukherjee, Temperature Dependence of the Dielectric, Elastic and Piezoelectric Material Constants of Lead Zirconate Titanate Ceramics. Proc., of Int. Conf. on Smart Materials Structure and Systems, 7–10 July, 1999, Bangalore India, pp. 121–126 S. Sherrit, G. Yang, H.D. Wiederick, B.K. Mukherjee, Temperature Dependence of the Dielectric, Elastic and Piezoelectric Material Constants of Lead Zirconate Titanate Ceramics. Proc., of Int. Conf. on Smart Materials Structure and Systems, 7–10 July, 1999, Bangalore India, pp. 121–126
18.
Zurück zum Zitat W. Ren, L. Han, R. Wicks, L. Yang, B.K. Mukherjee, Electric-field induced phase transitions of <001> oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Smart Structures Materials, Active Materials: Behavior Mechanics, SPIE Proc. 5761, 272–278 (2005) W. Ren, L. Han, R. Wicks, L. Yang, B.K. Mukherjee, Electric-field induced phase transitions of <001> oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Smart Structures Materials, Active Materials: Behavior Mechanics, SPIE Proc. 5761, 272–278 (2005)
19.
Zurück zum Zitat W. Ren, S.-F. Liu, B.K. Mukherjee, Appl. Phys. Lett. 80(17), 3174–3176 (2002)CrossRef W. Ren, S.-F. Liu, B.K. Mukherjee, Appl. Phys. Lett. 80(17), 3174–3176 (2002)CrossRef
20.
Zurück zum Zitat S. Zhang, D.-J. Jeong, Q. Zhang, T.R. Shrout, J. Cryst. Growth 247, 131–136 (2003)CrossRef S. Zhang, D.-J. Jeong, Q. Zhang, T.R. Shrout, J. Cryst. Growth 247, 131–136 (2003)CrossRef
21.
22.
Zurück zum Zitat D.A. Berlincourt, D.R. Curran, H. Jaffe, Piezoelectric and piezomagnetic materials and their function in transducers Physical Acoustics – Principles and methods, Vol. I – Part A, ed. by W.P. Mason (Academic, New York, 1964) D.A. Berlincourt, D.R. Curran, H. Jaffe, Piezoelectric and piezomagnetic materials and their function in transducers Physical Acoustics – Principles and methods, Vol. I – Part A, ed. by W.P. Mason (Academic, New York, 1964)
23.
Zurück zum Zitat R.C. Turner, P.A. Fuierer, R.E. Nenwham, T.R. Shrout, Appl. Acoust. 41, 299–324 (1994)CrossRef R.C. Turner, P.A. Fuierer, R.E. Nenwham, T.R. Shrout, Appl. Acoust. 41, 299–324 (1994)CrossRef
24.
Zurück zum Zitat D. Damjanovic, Curr. Opin. Solid State Mater. Sci. 3, 469–473 (1998)CrossRef D. Damjanovic, Curr. Opin. Solid State Mater. Sci. 3, 469–473 (1998)CrossRef
25.
Zurück zum Zitat M.J. Haun, E. Furman, S.J. Jang, H.A. McKinstry, L.E. Cross, J. Appl. Phys. 62(8), 3331–3338 (1987)CrossRef M.J. Haun, E. Furman, S.J. Jang, H.A. McKinstry, L.E. Cross, J. Appl. Phys. 62(8), 3331–3338 (1987)CrossRef
26.
Zurück zum Zitat M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, Ferroelectrics 99, 63–86 (1989) M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, Ferroelectrics 99, 63–86 (1989)
27.
Zurück zum Zitat M.-H. Berger, A. Sayir, F. Dynys, P. Berger, Solid State Ion. 177(26–32), 2339–2345 (2006)CrossRef M.-H. Berger, A. Sayir, F. Dynys, P. Berger, Solid State Ion. 177(26–32), 2339–2345 (2006)CrossRef
28.
Zurück zum Zitat W.L. Warren, D. Dimos, G.E. Pike, K. Vaheusden, Appl. Phys. Lett. 67(12), 1689–1691 (1995)CrossRef W.L. Warren, D. Dimos, G.E. Pike, K. Vaheusden, Appl. Phys. Lett. 67(12), 1689–1691 (1995)CrossRef
29.
Zurück zum Zitat W.L. Warren, K. Vaheusden, D. Dimos, G.E. Pike, B. Tuttle, J. Am. Ceram. Soc. 79(2), 536–538 (1996)CrossRef W.L. Warren, K. Vaheusden, D. Dimos, G.E. Pike, B. Tuttle, J. Am. Ceram. Soc. 79(2), 536–538 (1996)CrossRef
30.
Zurück zum Zitat P.V. Lambeck, G.H. Jonker, Ferroelectrics 22, 729–734 (1978) P.V. Lambeck, G.H. Jonker, Ferroelectrics 22, 729–734 (1978)
Metadaten
Titel
Electrical properties of PZT piezoelectric ceramic at high temperatures
verfasst von
Z. Gubinyi
C. Batur
A. Sayir
F. Dynys
Publikationsdatum
01.04.2008
Verlag
Springer US
Erschienen in
Journal of Electroceramics / Ausgabe 2/2008
Print ISSN: 1385-3449
Elektronische ISSN: 1573-8663
DOI
https://doi.org/10.1007/s10832-007-9364-3

Weitere Artikel der Ausgabe 2/2008

Journal of Electroceramics 2/2008 Zur Ausgabe

Neuer Inhalt