Skip to main content
Log in

Elevation and habitats: the potential of sites at different altitudes to provide refuges for phytophagous insects during climatic fluctuations

  • Short Communication
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Uplands are expected to provide refuges for species subject to lowland habitat loss and projected climate changes. Here, we argue that upland populations also provide refuges when lowland sites are subject to climatic fluctuations and extreme events and that species with populations dispersed over adjoining uplands and lowlands spread their risk of extinction. A proviso is that development is sufficiently lagged with altitude but that development rates are compatible. Emergence patterns and development of the butterfly Anthocharis cardamines and its larval host plant Cardamine pratensis show these characteristics, and coupled with the butterfly’s capacity to migrate between isolated populations present a case where upland and lowland populations can act as sources when one or the other area is adversely affected by extreme events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abrams PA, Leimar O, Nylin S, Wiklund C (1996) The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. Am Nat 147:381–395

    Article  Google Scholar 

  • Baguette M, Schtickzelle N (2003) Local population dynamics are important to the conservation of metapopulations in highly fragmented landscapes. J Appl Ecol 40:404–412

    Google Scholar 

  • Bird JM, Hodkinson ID (2005) What limits the altitudinal distribution of Craspedolepta species (Sternorrhyncha: Psylloidea) on fireweed? Ecol Entomol 30:510–520

    Article  Google Scholar 

  • Buonomo E, Jones R, Huntingford C, Hannaford JAF, Buonomo E, Jones R, Huntingford C, Hannaford J (2007) On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Q J Roy Meteorol Soc 133:65–81

    Article  Google Scholar 

  • Butterfield J (1996) Carabid life-cycle strategies and climatic change: a study on an altitude transect. Ecol Entomol 21:9–16

    Article  Google Scholar 

  • Chen IC, Shiu HJ, Benedick S, Holloway JD, Cheye VK, Barlow HS, Hill JK, Thomas CD (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc Natl Acad Sci 106:1479–1483

    Article  CAS  PubMed  Google Scholar 

  • Courtney SP, Duggan AE (1983) The population biology of the orange tip butterfly Anthocharis cardamines in Britain. Ecol Entomol 8:271–281

    Article  Google Scholar 

  • Den Boer PJ (1968) Spreading the risk and the stabilization of animal numbers. Acta Biotheor (Leiden) 18:165–194

    Article  Google Scholar 

  • Den Boer PJ (1981) On the survival of populations in a heterogeneous and variable environment. Oecologia 50:39–53

    Article  Google Scholar 

  • Dennis RLH (1982) Observations on habitats and dispersion made from oviposition markers in North Cheshire Anthocharis cardamines (L.) (Lepidoptera: Pieridae). Entomol Gaz 33:151–159

    Google Scholar 

  • Dennis RLH (1993) Butterflies and climate change. Manchester University Press, Manchester

    Google Scholar 

  • Dennis RLH (2010) A resource-based habitat view for conservation. Butterflies in the British landscape. Wiley-Blackwell, Oxford

    Google Scholar 

  • Dennis RLH, Bardell P (1996) The impact of extreme weather on Great Orme populations of Hipparchia semele (Linnaeus, 1758) and Plebejus argus (Linnaeus, 1758) (Papilionoidea: Satyrinae and Lycaenidae): hindsight, inference and lost opportunities. Entomol Gaz 47:211–225

    Google Scholar 

  • Dennis RLH, Shreeve TG (1996) Butterflies on British and Irish offshore islands. Gem Publishing Company, Wallingford, Oxon

    Google Scholar 

  • Dennis RLH, Shreeve TG, Van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Ekstrom M, Fowler HJ, Kilsby CG, Jones PD (2005) New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 2. Future estimates and use in impact studies. J Hydrol 300:234–251

    Article  Google Scholar 

  • Eyre MD, Rushton SP, Luff ML, Telfer MG (2005) Investigating the relationships between the distribution of British ground beetle species (Coleoptera, Carabidae) and temperature, precipitation and altitude. J Biogeogr 32:973–983

    Article  Google Scholar 

  • Fielding CA, Whittaker JB, Butterfield JEL, Coulson JC (1999) Predicting responses to climate change: the effect of altitude and latitude on the phenology of the Spittlebug Neophilaenus lineatus. Funct Ecol 13:65–73

    Article  Google Scholar 

  • Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Chang Biol 12:1545–1553

    Article  Google Scholar 

  • Gaston KJ (1994) Rarity. Chapman and Hall, London

    Google Scholar 

  • Gotthard K, Nylin S, Wiklund C (2000) Individual state controls temperature dependence in a butterfly (Lasiommata maera). Proc Roy Soc Lond Ser B Biol Sci 267:589–593

    Article  CAS  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology. A functional approach to common British species. Unwin Hyman, London (2nd ed, 2007, Castlepoint Press, Dalbeattie)

  • Hanski IA, Gilpin ME (1997) Metapopulation biology, ecology, genetics, and evolution. Academic Press, London

    Google Scholar 

  • Hill JK, Collingham YC, Thomas CD, Balkeley DS, Fox R, Moss D, Huntley B (2001) Impacts of landscape structure on butterfly range expansion. Ecol Lett 4:313–321

    Article  Google Scholar 

  • Hodgson JG, Grime JP, Wilson PJ, Thompson K, Band SR (2005) The impacts of agricultural change (1963–2003) on the grassland flora of central England: processes and prospects. Basic Appl Ecol 6:107–118

    Article  Google Scholar 

  • Hodkinson ID, Bird J, Miles JE, Bale JS, Lennon JJ (1999) Climatic signals in the life histories of insects: the distribution and abundance of heather psyllids (Strophingia spp.) in the UK. Funct Ecol 13:83–95

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) In: Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

  • Jones PD, Reid PA (2001) Assessing future changes in extreme precipitation over Britain using regional climate model integrations 2001. Int J Climatol 21:1337–1356

    Article  Google Scholar 

  • Kay AL, Jones RG, Reynard NS (2006) RCM (regional climate model) rainfall for UK flood frequency estimation. II. Climate change results. J Hydrol 318:163–172

    Article  Google Scholar 

  • Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer ‘‘cold-blooded’’ animals against climate warming. Proc Natl Acad Sci USA 106:3835–3840

    Article  CAS  PubMed  Google Scholar 

  • Kleijn D, Kohler F, Báldi A, Batáry P, Concepción ED, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJP, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc Roy Soc B 276:903–909

    Article  CAS  Google Scholar 

  • Konvicka M, Maradova M, Benes J, Fric Z, Kepka P (2003) Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale. Glob Ecol Biogeogr 12:403–410

    Article  Google Scholar 

  • Marren P (2002) Nature conservation—a review of the conservation of wildlife in Britain 1950–2001. HarperCollins, London

    Google Scholar 

  • Merrill RM, Gutierrez D, Lewis OT, Gutierrez J, Diez SB, Wilson RJ (2008) Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. J Anim Ecol 77:145–155

    Article  PubMed  Google Scholar 

  • Nieminen M, Siljander M, Hanski I (2004) Structure and dynamics of melitaea cinxia populations. In: Ehrlich PR, Hanski I (eds) On the wings of checkerspots. A model system for population biology. Oxford University Press, Oxford, pp 63–91

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pelini SL, Dzurisina JDK, Priora KM, Williams CM, Marsicoa TD, Sinclair BJ, Hellmanna JJ (2009) Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. PNAS 106:11160–11165

    Article  CAS  PubMed  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Shreeve TG, Dennis RLH, Pullin AS (1996) How marginal is the British butterfly fauna and what are the implications for research opportunities and conservation? Biodivers Conserv 5:1131–1141

    Article  Google Scholar 

  • Singer MC (1972) Complex components of habitat suitability within a butterfly colony. Science 176:75–77

    Article  PubMed  Google Scholar 

  • Storch D, Konvicka M, Benes J, Martinkova J, Gaston KJ (2003) Distribution patterns in butterflies and birds of the Czech republic: separating effects of habitat and geographical position. J Biogeogr 30:1195–1205

    Article  Google Scholar 

  • Strobbe F, Stoks R (2004) Life history reaction norms to time constraints in a damselfly: differential effects on size and mass. Biol J Linn Soc 83:187–196

    Article  Google Scholar 

  • Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581

    Article  CAS  PubMed  Google Scholar 

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    Article  CAS  PubMed  Google Scholar 

  • Weiss SB, Murphy DD, White RR (1988) Sun, slope, and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69:1486–1496

    Article  Google Scholar 

  • Whittaker JB, Tribe NP (1996) An altitudinal transect as an indicator of responses of a spittlebug (Auchenorrhyncha: Cercopidae) to climate change. Eur J Entomol 93:319–324

    Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Chang Biol 13:1873–1887

    Article  Google Scholar 

Download references

Acknowledgments

Our thanks to Barry Shaw for access to the Cheshire butterfly atlas data, to all recorders in Cheshire and Manchester for data from these areas and to two referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger L. H. Dennis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardy, P.B., Kinder, P.M., Sparks, T.H. et al. Elevation and habitats: the potential of sites at different altitudes to provide refuges for phytophagous insects during climatic fluctuations. J Insect Conserv 14, 297–303 (2010). https://doi.org/10.1007/s10841-009-9251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-009-9251-0

Keywords

Navigation