Skip to main content

Advertisement

Log in

Species traits predict island occupancy in noctuid moths

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Knowing how species’ traits relate to processes that underlie occupancy patterns such as colonisation and population persistence, is important for our understanding of how species survive in fragmented and changing landscapes. We used automatic UV light-traps to sample noctuid moths on two remote islands, and compared traits of island occupants with those of a species pool from mainland southeast Sweden. Widely distributed species, generalist species, species with a long adult activity period and species active late in the summer had higher probability of occupancy on the remote islands. The results were consistent between islands. The traits of host plant specificity and species with an adult activity period during late summer remained robust and were statistically significant after controlling for any possible phylogenetic bias. This indicates that species exhibiting those traits survive better when habitat and climate changes. It is crucial to include our results in; (1) conservation planning, e.g. when devising conservation measures in fragmented landscapes; (2) for predictions of future occupancy patterns; and (3) ecosystem impact assessments, e.g. the importance of moths as pollinators, herbivores and being the functional link between parasitoids, plants, consumers and predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agresti A, Finlay B (1986) Statistical methods for the social sciences. Prentice Hall, New York

    Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188

    Article  Google Scholar 

  • Bergman KO, Askling J, Ekberg O, Ignell H, Wahlman H, Milberg P (2004) Landscape effects on butterfly assemblages in an agricultural region. Ecography 27:619–628

    Article  Google Scholar 

  • Betzholtz PE, Franzen M (201X) Mobility is related to species traits in noctuid moths. Ecol Entomol. doi:10.1111/j.1365-2311.2011.01281.x

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Article  Google Scholar 

  • Conrad KF, Woiwood IP, Parson MS, Fox R, Warren MS (2004) Long-term population trends in widespread British moths. J Insect Conserv 8:119–136

    Google Scholar 

  • Conrad KF, Warren MS, Fox R, Parsons MS, Woiwood IP (2006) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol Conserv 132:279–291

    Article  Google Scholar 

  • Cook LM, Dennis RLH, Hardy PB (2001) Butterfly-hostplant fidelity, vagrancy and measuring mobility from distribution maps. Ecography 24:497–504

    Article  Google Scholar 

  • Dapporto L, Dennis RLH (2008) Species richness, rarity and endemicity on Italian offshore islands: complementary signals from island-focused and species-focused analyses. J Biogeogr 35:664–674

    Article  Google Scholar 

  • Dapporto L, Dennis RLH (2009) Conservation biogeography of large Mediterranean islands. Butterfly impoverishment, conservation priorities and inferences for an ecologica “island paradigm”. Ecography 32:169–179

    Article  Google Scholar 

  • Dapporto L, Dennis RLH (2010) Skipper butterfly impoverishment on large Mediterranean islands (Lepidoptera Hesperiidae): deterministic factors and stochastic events. Biodivers Conserv 19:2637–2649

    Article  Google Scholar 

  • Dennis RLH (2010) A resource-based habitat view for conservation. Butterflies in the British landscape. Wiley-Blackwell, Oxford

    Google Scholar 

  • Dennis RLH, Shreeve TG (1997) Diversity of butterflies on British islands: ecological influences underlying the roles of area, isolation and the size of the faunal source. Biol J Linn Soc 60:257–275

    Article  Google Scholar 

  • Dennis RLH, Donato B, Sparks TH, Pollard E (2000) Ecological correlates of island incidence and geographical range among British butterflies. Biodivers Conserv 9:343–359

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG, van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426

    Article  Google Scholar 

  • Dennis RLH, Hodgson JG, Grenyer R, Shreeve TG, Roy DB (2004) Host plants and butterfly biology. Do host plant strategies drive butterfly status? Ecol Entomol 29:12–26

    Article  Google Scholar 

  • Dennis RLH, Dapporto L, Shreeve TG, John E, Coutsis JG, Kudrna O, Saarinen K, Ryrholm N, Williams WR (2008) Butterflies of European islands: the implications of the geography and ecology of rarity and endemicity for conservation. J Insect Conserv 12:205–236

    Article  Google Scholar 

  • Dennis RLH, Dapporto L, Sparks TH, Williams SR, Greatorex-Davies JN, Asher J, Roy DB (2010) Turnover and trends in butterfly communities on two British tidal islands: stochastic influences and deterministic factors. J Biogeogr 37:2291–2304

    Article  Google Scholar 

  • Desender K, Dekoninck W, Dufrêne M, Maes D (2010) Changes in the distribution of carabid beetles in Belgium revisited: have we halted the diversity loss? Biol Conserv 143:1549–1557

    Article  Google Scholar 

  • Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13:3–27

    Article  Google Scholar 

  • Emmet AM (1991) Life history and habits of the British Lepidoptera. In: Emmet AM, Heath J (eds) The moths and butterflies of Great Britain and Ireland. Harley Books, Colchester, pp 61–203

    Google Scholar 

  • Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59

    Article  Google Scholar 

  • Fibiger M (1993) Noctuidae Europaeae. Noctuidae I. Entomological press, Sorö

    Google Scholar 

  • Franzén M, Johannesson M (2007) Predicting extinction risk of butterflies and moths (Macrolepidoptera) from distribution patterns and species characteristics. J Insect Conserv 11:367–390

    Article  Google Scholar 

  • Gärdenfors U (2010) The 2010 red list of Swedish species. Swedish species information centre, SLU, Uppsala

    Google Scholar 

  • Gaston KJ, Blackburn TM, Greenwood JJD, Gregory RD, Quinn RM, Lawton JH (2000) Abundance-occupancy relationships. J Appl Ecol 37:39–59

    Article  Google Scholar 

  • Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71:757–764

    Article  Google Scholar 

  • Groenendijk D, Ellis W (2010) The state of the Dutch larger moth fauna. J Insect Conserv 15:95–101

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, New York

    Google Scholar 

  • Hardy PB, Sparks TH, Isaac NJB, Dennis RLH (2007) Specialism for larval and adult consumer resources among British butterflies: implications for conservation. Biol Conserv 138:440–452

    Article  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Harvey PH, Purvis A (1991) Comparative methods for explaining adaptations. Nature 351:619–625

    Article  PubMed  CAS  Google Scholar 

  • Hill JK, Collingham YC, Thomas CD, Blakeley DS, Fox R, Moss D, Huntley B (2001) Impacts of landscape structure on butterfly range expansion. Ecol Lett 4:313–321

    Article  Google Scholar 

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc B 269:2163–2171

    Article  PubMed  CAS  Google Scholar 

  • Huldén L, Albrecht A, Itämies J, Malinen P, Wettenhovi J (2000) Atlas of finnish macrolepidoptera. Lepidopterologiska sällskapet i Finland, Helsingfors

  • Inkinen P (1994) Distribution and abundance in British noctuid moths revisited. Ann Zool Fenn 31:235–243

    Google Scholar 

  • Jonasson JÅ (2002) Småfjärilsfaunan på Gotska Sandön. Rapport 5164. Naturvårdsverket, Stockholm

  • Karsholt O, Razowski J (1996) The Lepidoptera of Europe—a distributional checklist. Apollo books, Stenstrup

    Google Scholar 

  • Kotiaho J, Kaitala V, Komonen A, Päivinen J (2005) Predicting the risk of extinction from shared ecological characteristics. Proc Nat Acad Sci 102:1963–1967

    Article  PubMed  CAS  Google Scholar 

  • Leinonen R, Söderman G, Itämies J, Rytkonen S, Rutanen I (1998) Intercalibration of different light-traps and bulbs used in moth monitoring in northern Europe. Entomol Fenn 9:37–51

    Google Scholar 

  • León-Cortés JL, Lennon JJ, Thomas CD (2003) Ecological dynamics of extinct species in empty habitat networks. 2. The role of host plant dynamics. Oikos 102:465–477

    Article  Google Scholar 

  • Lindeborg M (2009) Intressanta fynd av storfjärilar (Macrolepidoptera) i Sverige 2008. Entomol Tidskr 130:11–20

    Google Scholar 

  • Lindgren S (1968) Lövskogsvegetation på Gotska Sandön. Stockholms universitet, Botaniska institutionen, Stockholm

    Google Scholar 

  • Lindroth CH, Andersson H, Bodvarsson H, Richter SH (1973) Surtsey, Iceland. The development of a new fauna, 1963–1970. Terrestrial invertebrates. Entomol Scand, Suppl 5:280, Copenhagen

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Mace GM, Kershaw M (1997) Extinction risk and rarity on an ecological timescale. In: Kunin WE, Gaston KJ (eds) The Biology of rarity: the causes and consequences of rare-common differences. Chapman & Hall, London, pp 131–149

    Google Scholar 

  • Mattila N, Kaitala V, Komonen A, Kotiaho JS, Paivinen J (2006) Ecological determinants of distribution decline and risk of extinction in moths. Conserv Biol 20:1161–1168

    Article  PubMed  Google Scholar 

  • Mattila N, Kotiaho JS, Kaitila V, Komonen A (2008) The use of ecological traits in extinction risk assessments: a case study on geometrid moths. Biol Conserv 141:2322–2328

    Article  Google Scholar 

  • Mattila N, Kotiaho JS, Kaitala V, Komonen A (2009) Interactions between ecological traits and host plant type explain distribution change in Noctuid moths. Conserv Biol 23:703–709

    Article  Google Scholar 

  • Mattsson L (1976) Utklippan—en utpost i havet. Fåglar i Blekinge 12:216–225

    Google Scholar 

  • New TR (2004) Moths (Insecta: Lepidoptera) and conservation: background and perspective. J Insect Conserv 8:79–94

    Google Scholar 

  • New TR, Pyle RM, Thomas JA, Thomas CD, Hammond PC (1995) Butterfly conservation management. Annu Rev Entomol 40:57–83

    Article  CAS  Google Scholar 

  • Nieminen M, Rita H, Uuvana P (1999) Body size and migration rate in moths. Ecography 22:697–707

    Article  Google Scholar 

  • Nilsson SG, Franzén M, Jönsson E (2008) Long-term land-use changes and extinction of specialised butterflies. Insect Conserv Divers 1:197–207

    Google Scholar 

  • Öckinger E, Hammarstedt O, Nilsson SG, Smith HG (2006) The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels. Biol Conserv 128:564–573

    Article  Google Scholar 

  • Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979

    PubMed  Google Scholar 

  • Piha M, Linden A, Pakkala T, Tiainen J (2007) Linking weather and habitat to population dynamics of a migratory farmland songbird. Ann Zool Fenn 44:20–34

    Google Scholar 

  • Pöyry J, Luoto M, Heikkinen RK, Kuussaari M, Saarinen K (2009) Species traits explain recent range shifts of Finnish butterflies. Glob Change Biol 15:732–743

    Article  Google Scholar 

  • Scoble MJ (1988) The lepidoptera: form, function and diversity. Oxford University Press, Oxford

    Google Scholar 

  • Shreeve TG (1995) Butterfly mobility. In: Pullin AS (ed) Ecology and conservation of butterflies. Chapman and Hall, London

    Google Scholar 

  • Shreeve TG, Dennis RLH (2011) Landscape scale conservation: resources, behaviour, the matrix and opportunities. J Insect Conserv. doi:10.1007/s10841-010-9336-9

  • Shreeve TG, Dennis RLH, Roy DB, Moss D (2001) An ecological classification of British butterflies: ecological attributes and biotope occupancy. J Insect Conserv 5:145–161

    Article  Google Scholar 

  • Skou P (1991) Nordens ugler. Apollo Books, Stenstrup

    Google Scholar 

  • Söderman G (1994) Moth monitoring scheme—a handbook for field work and data reporting. Environment Data Centre (EDC). National Board of Waters and the Environment, Helsinki

    Google Scholar 

  • Sparks TH, Roy DB, Dennis RLH (2005) The influence of temperature on migration of lepidoptera into Britain. Glob Change Biol 11:507–514

    Article  Google Scholar 

  • Sparks TH, Dennis RL, Croxton PJ, Cade M (2007) Increased migration of lepidoptera linked to climate change. Eur J Entomol 104:139–143

    Google Scholar 

  • Stearns SC (1983) The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos 41:173–187

    Article  Google Scholar 

  • Svensson I (1993) Lepidoptera-calender. Hans Hellberg, Stockholm

    Google Scholar 

  • Svensson I, Elmquist H, Gustafsson B, Hellberg H, Imby L, Palmqvist G (1994) Catalogus Lepidopterorum Sueciae. Entomologiska Föreningen, Stockholm

    Google Scholar 

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    Article  PubMed  CAS  Google Scholar 

  • Wenzel M, Schmitt T, Weitzel M, Seitz A (2006) The severe decline of butterflies on western German calcareous grasslands during the last 30 years: a conservation problem. Biol Conserv 128:542–552

    Article  Google Scholar 

  • Wilson RJ, Roy D (2009) Butterfly population structure and dynamics. In: Settele J, Shreeve TG, Konvicka M, van Dyck H (eds) Ecology of butterflies. Cambridge University Press, Cambridge

    Google Scholar 

  • Woiwood IP, Stewart AJA (1990) Butterflies and moths—migration in the agricultural environment. In: Bunce RGH, Howard DC (eds) Species dispersal in agricultural habitats. Belhaven, London

    Google Scholar 

Download references

Acknowledgments

We thank Anders Forsman, Patrik Dinnétz and Erik Öckinger for valuable statistical advice and constructive comments on the manuscript. Thanks also to Tomas Nilsson, Kjell Arvidsson, Lennart Rovin and Sjöräddningssällskapet Hasslö for organising transport and making it possible to perform the study on Utklippan; Dag Pedersen and the other park wardens on Gotska Sandön. Permission for using light-traps in protected areas was issued by the County Administration Board of Blekinge (Utklippan) and Gotland (Gotska Sandön). Financial support was provided by “Stiftelsen Längmanska Kulturfonden”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Franzén.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzén, M., Betzholtz, PE. Species traits predict island occupancy in noctuid moths. J Insect Conserv 16, 155–163 (2012). https://doi.org/10.1007/s10841-011-9401-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-011-9401-z

Keywords

Navigation