Skip to main content

Advertisement

Log in

Are urban green spaces suitable for woodland carabids? First insights from a short-term experiment

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

One consequence of the spatial expansion of cities is the multiplication of highly fragmented and diverse green spaces immediately surrounded by urban areas. Whereas the global expansion of urban areas is a growing concern for the viability of woodland arthropods, the suitability of green spaces as refuges to arthropods needs to be clarified. In order to assess and compare the survival rates of the woodland carabid Abax parallelepipedus in four types of green urban sites (remnant forest patch, urban park, woody corridor and set of gardens), we conducted a Capture-Mark-Recapture experiment based on 483 individuals collected in a forest located in a natural landscape (considered as the control site) and released into the various green spaces. Results indicated strong heterogeneity in survival probability between green spaces. Survival rates were slightly higher in the control site than in the remnant forest patch, the urban park and the corridor, which appear suitable for the survival of the species. However, it was substantially lower in the gardens. The analysis further revealed that these differences in survival are largely explained by the differences of within –site habitat fragmentation. By indicating that urban green spaces may contribute unequally to woodland carabids survival, our study highlights that the modification of local environmental conditions alone (increase of temperature, increase of soil pollution and change in food availability) could not explain the negative effect of urbanization. This study argues for the development of corridors in cities in order to favour the colonisation of green spaces by woodland carabids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahern J (2007) Green infrastructure for cities: the spatial dimension. In: Novotny V, Brown P (eds) Cities of the future: towards integrated sustainable water and landscape management. IWA Publishers, London, pp 267–283

    Google Scholar 

  • Alvey AA (2006) Promoting and preserving biodiversity in the urban forest. Urban For Urban Green 5:195–201

    Article  Google Scholar 

  • Balkenhol B, Flisse J, Zucchi H (1991) Investigations into carabid beetles and spiders (Carabidae and Araneida) in an urban quarry—to the problem of habitat isolation. Pedobiologia 35:153–162

    Google Scholar 

  • Bergerot B, Julliard R, Baguette M (2010) Metacommunity dynamics: decline of functional relationship along a habitat fragmentation gradient. PLoS ONE 5:e11294. doi:10.1371/journal.pone.0011294

    Article  PubMed  Google Scholar 

  • Botequilha Leitão A, Ahern J (2002) Applying landscape ecological concepts and metrics in sustainable landscape planning. Landsc Urban Plan 59:65–93

    Article  Google Scholar 

  • Breuste J, Niemelä J, Snep R (2008) Applying landscape ecological principles in urban environments. Landsc Ecol 23:1139–1142

    Article  Google Scholar 

  • Brouwers NC, Newton AC (2009) Movement rates of woodland invertebrates: a systematic review of empirical evidence. Insect Conserv Divers 2:10–22

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and inference—a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Carpaneto G, Mazziotta A, Coletti G, Luiselli L, Audisio P (2010) Conflict between insect conservation and public safety: the case study of a saproxylic beetle (Osmoderma eremita) in urban parks. J Insect Conserv 14:555–565. doi:10.1007/s10841-010-9283-5

    Article  Google Scholar 

  • Chaabane K, Loreau M, Josens G (1996) Individual and population energy budgets of Abax ater (Coleoptera, Carabidae). Ann Zool Fenn 33:97–108

    Google Scholar 

  • Charrier S, Petit S, Burel F (1997) Movements of Abax parallelepipedus (Coleoptera, Carabidae) in woody habitats of a hedgerow network landscape: a radio-tracing study. Agric Ecosyst Environ 61:133–144

    Article  Google Scholar 

  • Chen BR, Wise DH (1999) Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80:761–772

    Article  Google Scholar 

  • Choquet R, Lebreton J-D, Gimenez O, Reboulet A-M, Pradel R (2009) U-CARE: utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32:1071–1074

    Article  Google Scholar 

  • Croci S, Butet A, Georges A, Aguejdad R, Clergeau P (2008) Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach. Landsc Ecol 23:1171–1186

    Article  Google Scholar 

  • Davies ZG, Fuller RA, Loram A, Irvine KN, Sims V, Gaston KJ (2009) A national scale inventory of resource provision for biodiversity within domestic gardens. Biol Conserv 142:761–771

    Article  Google Scholar 

  • Dearborn DC, Kark S (2010) Motivations for conserving urban biodiversity motivaciones para Conservar la Biodiversidad Urbana. Conserv Biol 24:432–440

    Article  PubMed  Google Scholar 

  • Deichsel R (2006) Species change in an urban setting—ground and rove beetles (Coleoptera: Carabidae and Staphylinidae) in Berlin. Urban Ecosyst 9:161–178

    Article  Google Scholar 

  • den Boer PJ (1970) On the significance of dispersal power for populations of carabid-beetles (Coleoptera, Carabidae). Oecologia 4:1–28

    Article  Google Scholar 

  • den Boer PJ (1981) On the survival of populations in a heterogeneous and variable environment. Oecologia 50:39–53

    Article  Google Scholar 

  • den Boer PJ (1990) Density limits and survival of local-populations in 64 carabid species with different powers of dispersal. J Evol Biol 3:19–48. doi:10.1046/j.1420-9101.1990.3010019.x

    Article  Google Scholar 

  • Desender K, Small E, Gaublomme E, Verdyck P (2005) Rural-urban gradients and the population genetic structure of woodland ground beetles. Conserv Genet 6:51–62

    Article  Google Scholar 

  • Doody B, Sullivan J, Meurk C, Stewart G, Perkins H (2010) Urban realities: the contribution of residential gardens to the conservation of urban forest remnants. Biodivers Conserv 19:1385–1400

    Article  Google Scholar 

  • Dreistadt SH, Dahlsten DL, Gordon WF (1990) Urban forests and insect ecology. Bioscience 40:192–198

    Article  Google Scholar 

  • Eggers B, Matern A, Drees C, Eggers J, Hardtle W, Assmann T (2010) Value of semi-open corridors for simultaneously connecting open and wooded habitats: a case study with ground beetles. Conserv Biol 24:256–266

    Article  PubMed  Google Scholar 

  • Fattorini S (2011) Insect extinction by urbanization: a long term study in Rome. Biol Conserv 144:370–375

    Article  Google Scholar 

  • Gaston K, Smith R, Thompson K, Warren P (2005) Urban domestic gardens (II): experimental tests of methods for increasing biodiversity. Biodivers Conserv 14:395–413

    Article  Google Scholar 

  • Goddard MA, Dougill AJ, Benton TG (2010) Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol 25:90–98. doi:10.1016/j.tree.2009.07.016

    Article  PubMed  Google Scholar 

  • Greenslade PJM (1964) The distribution, dispersal and size of a population of Nebria brevicollis (F.), with comparative studies on three other carabidae. J Anim Ecol 33:311–333

    Article  Google Scholar 

  • Grüm L (1975) Mortality patterns in carabid populations. Ekol Polska 23:649–665

    Google Scholar 

  • Hagler JR, Jackson CG (2001) Methods for marking insects: current techniques and future prospects. Annu Rev Entomol 46:511–543. doi:10.1146/annurev.ento.46.1.511

    Article  PubMed  CAS  Google Scholar 

  • Hannon E, Hafernik J (2007) Reintroduction of the rare damselfly Ischnura gemina (Odonata: Coenagrionidae) into an urban California park. J Insect Conserv 11:141–149. doi:10.1007/s10841-006-9027-8

    Article  Google Scholar 

  • Horák J (2011) Response of saproxylic beetles to tree species composition in a secondary urban forest area. Urban For Urban Green 10:213–222

    Article  Google Scholar 

  • Hornung E, Tóthmérész B, Magura T, Vilisics F (2007) Changes of isopod assemblages along an urban–suburban–rural gradient in Hungary. Eur J Soil Biol 43:158–165. doi:10.1016/j.ejsobi.2007.01.001

    Article  Google Scholar 

  • Hunter MD (2002) Landscape structure, habitat fragmentation, and the ecology of insects. Agric For Entomol 4:159–166

    Article  Google Scholar 

  • Hunter MR, Hunter MD (2008) Designing for conservation of insects in the built environment. Insect Conserv Divers 1:189–196

    Google Scholar 

  • Jopp F, Reuter H (2005) Dispersal of carabid beetles—emergence of distribution patterns. Ecol Model 186:389–405

    Article  Google Scholar 

  • Jordán F, Magura T, Tóthmérész B, Vasas V, Ködöböcz V (2007) Carabids (Coleoptera: Carabidae) in a forest patchwork: a connectivity analysis of the Bereg Plain landscape graph. Landsc Ecol 22:1527–1539. doi:10.1007/s10980-007-9149-8

    Article  Google Scholar 

  • Koivula M, Vermeulen H (2005) Highways and forest fragmentation—effects on carabid beetles (Coleoptera, Carabidae). Landsc Ecol 20:911–926

    Article  Google Scholar 

  • Kotze D, Lehvävirta S, Koivula M, O’Hara R, Spence J (2012) Effects of habitat edges and trampling on the distribution of ground beetles (Coleoptera, Carabidae) in urban forests. J Insect Conserv 1–15. doi:10.1007/s10841-012-9475-2

  • Laake J (2011) RMark: R code for MARK analysis. R package version 2.0.7. http://CRANR-projectorg/package=RMark

  • Lagisz M, Wolff K, Sanderson RA, Laskowski R (2010) Genetic population structure of the ground beetle, Pterostichus oblongopunctatus, inhabiting a fragmented and polluted landscape: evidence for sex-biased dispersal. J Insect Sci 10:1–20

    Article  Google Scholar 

  • Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Lehvävirta S, Kotze D, Niemelä J, Mäntysaari M, O’Hara B (2006) Effects of fragmentation and trampling on carabid beetle assemblages in urban woodlands in Helsinki, Finland. Urban Ecosyst 9:13–26

    Article  Google Scholar 

  • Lizée M-H, Manel S, Mauffrey J-F, Tatoni T, Deschamps-Cottin M (2012) Matrix configuration and patch isolation influences override the species–area relationship for urban butterfly communities. Landsc Ecol 27:159–169. doi:10.1007/s10980-011-9651-x

    Article  Google Scholar 

  • Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491

    Article  PubMed  Google Scholar 

  • Loram A, Tratalos J, Warren P, Gaston K (2007) Urban domestic gardens (X): the extent & structure of the resource in five major cities. Landsc Ecol 22:601–615

    Article  Google Scholar 

  • Loreau M (1985) Annual activity and life cycles of carabid beetles in two forest communities. Ecography 8:228–235

    Article  Google Scholar 

  • Loreau M, Nolf CL (1993) Occupation of space by the carabid beetle Abax ater. Acta Oecol 14:247–258

    Google Scholar 

  • Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256

    Article  PubMed  Google Scholar 

  • Mader HJ (1984) Animal habitat isolation by roads and agricultural fields. Biol Conserv 29:81–96

    Article  Google Scholar 

  • Mader HJ, Schell C, Kornacker P (1990) Linear barriers to arthropod movements in the landscape. Biol Conserv 54:209–222

    Article  Google Scholar 

  • Magura T, Tóthmérész B, Molnár T (2001) Forest edge and diversity: carabids along forest-grassland transects. Biodivers Conserv 10:287–300. doi:10.1023/a:1008967230493

    Article  Google Scholar 

  • Magura T, Tóthmérész B, Elek Z (2005) Impacts of leaf-litter addition on carabids in a conifer plantation. Biodivers Conserv 14:475–491. doi:10.1007/s10531-004-7307-8

    Article  Google Scholar 

  • Magura T, Horváth R, Tóthmérész B (2010a) Effects of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landsc Ecol 25:621–629. doi:10.1007/s10980-009-9445-6

    Article  Google Scholar 

  • Magura T, Lövei GL, Tóthmérész B (2010b) Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Global Ecol Biogeogr 19:16–26

    Article  Google Scholar 

  • McGarigal Kea (2002) Fragstats: spatial pattern analysis program for categorical maps. 3.0 edn. www.umass.edu/landeco/research.fragstats/fragstats.html, University of Massachusetts

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890. doi:10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2

    Google Scholar 

  • Miller JR, Hobbs RJ (2002) Conservation where people live and work Conservación donde la Gente Vive y Trabaja da planeación eficaz de la conservación. Conserv Biol 16:330–337

    Article  Google Scholar 

  • Niemela J (2001) Carabid beetles (Coleoptera: Carabidae) and habitat fragmentation: a review. Eur J Entomol 98:127–132

    Google Scholar 

  • Pauchard A, Aguayo M, Peña E, Urrutia R (2006) Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepcion, Chile). Biol Conserv 127:272–281

    Article  Google Scholar 

  • Petit S (1994) Métapopulations dans les réseaux bocagers: analyse spatiale et diffusion. Université de Rennes 1, Rennes

  • Pouyat R, Yesilonis I, Szlavecz K, Csuzdi C, Hornung E, Korsòs Z, Russell-Anelli J, Giorgio V (2008) Response of forest soil properties to urbanization gradients in three metropolitan areas. Landsc Ecol 23:1187–1203

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ribera I, Dolédec S, Downie IS, Foster GN (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82:1112–1129

    Article  Google Scholar 

  • Scheu S (2002) The soil food web: structure and perspectives. Eur J Soil Biol 38:11–20

    Article  Google Scholar 

  • Simon E, Vidic A, Braun M, Fábián I, Tóthmérész B (2012) Trace element concentrations in soils along urbanization gradients in the city of Wien, Austria. Environ Sci Pollut Res 1–8. doi:10.1007/s11356-012-1091-x

  • Skalski JR (1996) Regression of abundance estimates from mark recapture surveys against environmental covariates. Can J Fish Aquat Sci 53:196–204. doi:10.1139/f95-169

    Article  Google Scholar 

  • Smith R, Gaston K, Warren P, Thompson K (2006) Urban domestic gardens (VIII): environmental correlates of invertebrate abundance. Biodivers Conserv 15:2515–2545

    Article  Google Scholar 

  • Stagoll K, Lindenmayer DB, Knight E, Fischer J, Manning AD (2012) Large trees are keystone structures in urban parks. Conserv Lett 5:115–122. doi:10.1111/j.1755-263X.2011.00216.x

    Article  Google Scholar 

  • Symondson WOC (1994) The potential of Abax parallelepipedus (col, carabidae) for mass breeding as a biological-control agent against slugs. Entomophaga 39:323–333. doi:10.1007/bf02373037

    Article  Google Scholar 

  • Thomas CFG, Brown NJ, Kendall DA (2006) Carabid movement and vegetation density: implications for interpreting pitfall trap data from split-field trials. Agric Ecosyst Environ 113:51–61

    Article  Google Scholar 

  • Tóthmérész B, Máthé I, Balázs E, Magura T (2011) Responses of carabid beetles to urbanization in Transylvania (Romania). Landsc Urban Plan 101:330–337

    Article  Google Scholar 

  • UNFPA (2011) State of the world population 2011. People and possibilities in a world of 7 billion. http://foweb.unfpa.org/SWP2011/reports/EN-SWOP2011-FINAL.pdf

  • Vergnes A, Le Viol I, Clergeau P (2012) Green corridors in urban landscapes affect the arthropod communities of domestic gardens. Biol Conserv 145:171–178. doi:10.1016/j.biocon.2011.11.002

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi:10.1126/science.1094875

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Eric le Saux, Morgane Guerrin, Yohan Youessou and Fiona Pujalte for their help in the fields and in insect marking. Many thanks to Céline Teplitsky for checking the English. This study was supported by the French Ministry of Ecology and the ANR program “Trame Verte Urbaine”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Vergnes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergnes, A., Chantepie, S., Robert, A. et al. Are urban green spaces suitable for woodland carabids? First insights from a short-term experiment. J Insect Conserv 17, 671–679 (2013). https://doi.org/10.1007/s10841-013-9551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-013-9551-2

Keywords

Navigation