Skip to main content

Advertisement

Log in

Evolutionarily significant units in a flightless ground beetle show different climate niches and high extinction risk due to climate change

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Species distribution models (SDMs), especially those basing on climatic parameters, have frequently been used to project future species ranges and to develop conservation strategies. As suggested by several authors, we considered both different dispersal abilities and different evolutionarily significant units (ESUs, as determined in an earlier genetic survey). For our study species, the flightless ground beetle Carabus irregularis, SDMs for two ESUs from the western and the Carpathian area of the distribution range showed immense, and deviating future range contractions reflecting divergent ecological requirements. As minimal dispersal SDMs resulted in a stronger decline of future ranges than the maximal dispersal models, low dispersal ability tended to strengthen the already high vulnerability of the cold-adapted mountain species to global warming. Areas shown in our maximal dispersal models as offering climatically suitable habitats for C. irregularis in the future should be considered as potential areas of action in future conservation planning (e.g. assisted migration or assisted colonisation). Thus, both dispersal scenarios and different (if applicable) ESUs should be considered when developing SDMs as useful tools for species conservation strategies adapted to species’ performance and differentiation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Assmann T (1995) Zur Populationsgeschichte der Laufkäfer Carabus punctatoauratus Germar und Carabus auronitens Fabricius (Coleoptera, Carabidae): Über Endemismus in eiszeitlichen Refugialräumen und postglaziale Arealausweitung. Osnabrücker Naturwissenschaftliche Mitteilungen 20(21):225–273

    Google Scholar 

  • Assmann T, Janssen J (1999) The effects of habitat changes on the endangered ground beetle Carabus nitens (Coleoptera: Carabidae). J Insect Conserv 3:107–116

    Article  Google Scholar 

  • Assmann T, Weber F (1997) On the allozyme differentiation of Carabus punctatoauratus Germar (Coleoptera, Carabidae). J Zool Syst Evol Res 35:33–43

    Article  Google Scholar 

  • Baselga A, Lobo JM, Svenning J-C, Aragón P, Araújo MB (2012) Dispersal ability modulates the strength of the latitudinal richness gradient in European beetles. Global Ecol Biogeogr 21(11):1106–1113. doi:10.1111/j.1466-8238.2011.00753.x

    Article  Google Scholar 

  • Bousquet Y (2012) Catalogue of Geadephaga (Coleoptera: Adephaga) of America, north of Mexico. ZooKeys 245:1–1722

    Article  PubMed  Google Scholar 

  • Bousquet Y, Brezina B, Davies A, Farkac J, Smetana A (2003) Tribe Carabini Latreille, 1802. In: Löbl I, Smetana A (eds) Catalogue of Palaearctic Coleoptera, vol 1., Archostemata, MyxophagaAdephaga. Apollo Books, Stenstrup, pp 118–201

    Google Scholar 

  • Casale A, Kryzhanovskij OL (2003) Key to the adults. In: Turin H, Penev L, Casale A (eds) The genus Carabus in Europe—a synthesis. Sofia, Pensoft, pp 73–124

    Google Scholar 

  • Colas G (1969) Le Carabus (Chrysocarabus) punctatoauratus Germ. et ses races. Bull Soc Entomol Mulhouse 34:21–32

    Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15(7):290–295

    Article  PubMed  Google Scholar 

  • De Vries HH (1996) Metapopulation structure of Pterostichus lepidus and Olisthopus rotundatus on heathland in the Netherlands: the results from transplant experiments. Ann Zool Fenn 33:77–84

    Google Scholar 

  • Desender K, Dekoninck W, Maes D (2008) Een nieuwe verspreidingsatlas van de loopkevers en zandloopkevers (Carabidae) in België. Rapporten van het Instituut voor Natuur- en Bosonderzoek 2008 Instituut voor Natuur- en Bosonderzoek, Brussel

  • Dieker P, Drees C, Assmann T (2011) Two high-mountain burnet moth species (Lepidoptera, Zygaenidae) react differently to the global change drivers climate and land-use. Biol Conserv 144(12):2810–2818. doi:10.1016/j.biocon.2011.07.018

    Article  Google Scholar 

  • Dieker P, Drees C, Schmitt T, Assmann T (2013) Low genetic diversity of a high mountain burnet moth species in the Pyrenees. Conserv Genet 14(1):231–236

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evolut Syst 40:677–697

    Article  Google Scholar 

  • Engler R, Guisan A (2009) MigClim: predicting plant distribution and dispersal in a changing climate. Divers Distrib 15(4):590–601. doi:10.1111/j.1472-4642.2009.00566.x

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49

    Article  Google Scholar 

  • Flechtner G (2000) Coleoptera (Käfer). Naturwaldreservate in Hessen 5/2.2—Niddahänge östlich Rudingshain. Zool Unters 1990–1992. Mitt. Hess. Landesforstverwaltung, Wiesbaden

  • Frankham R (2003) Genetics and conservation biology. C R Biol 326:22–29

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2005) Introduction to conservation genetics. 2. Auflage edn. Cambridge University Press, Cambridge

  • Franzen M (1995) Nachweise von Carabus irregularis Fabricius, 1792 aus Rheinland-Pfalz (Coleoptera: Carabidae). Fauna Flora Rheinl-Pfalz 8:5–15

    Google Scholar 

  • Gebert J (2006) Die sandlaufkäfer und laufkäfer von sachsen, beiträge zur insektenfauna sachsens, Teil 1, Band 4 (Cicindelini-Loricerini). Entomologische Nachrichten und Berichte. Beiheft 10, Dresden

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Habel JC, Augenstein B, Nève G, Rödder D, Assmann T (2010) Population genetics and ecological niche modelling reveal high fragmentation and potential future extinction of the endangered relict butterfly Lycaena helle. In: Habel JC, Assmann T (eds) Relict species, phylogeography and conservation biology. Springer, Heidelberg, pp 417–439

    Google Scholar 

  • Habel JC, Rödder D, Schmitt T, Nève G (2011) Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob Change Biol 17:194–205

    Article  Google Scholar 

  • Hartmann M (1998) Die Verbreitung von Carabus irregularis F., C. linnei PANZER und C. sylvestris PANZER in Thürningen (Coleoptera, Carabidae). Thüringer Faunistische Abhandlungen V:147–152

  • Haubrich K, Schmitt T (2007) Cryptic differentiation in alpine-endemic, high-altitude butterflies reveals down-slope glacial refugia. Mol Ecol 16:3643–3658

    Article  PubMed  CAS  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–778

    Article  Google Scholar 

  • Hejda R (2011) Map of distribution of Carabus irregularis in the Czech Republic. In: Zicham O (ed) Biological library—BioLib. http://www.biolib.cz/en/taxonmap/id348/

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Clim Change Biol 12(3):450–455

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Homburg K, Drees C, Gossner MM, Rakosy L, Vrezec A, Assmann T (2013) Multiple glacial refugia of the low-dispersal ground beetle Carabus irregularis: molecular data support predictions of species distribution models. PLoS One 8(4):e61185. doi:10.1371/journal.pone.0061185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • IUCN (1980) World Conservation Strategy. Living resource conservation for sustainable development

  • Kharouba HM, McCune JL, Thuiller W, Huntley B (2012) Do ecological differences between taxonomic groups influence the relationship between species’ distributions and climate? A global meta-analysis using species distribution models. Ecography. doi:10.1111/j.1600-0587.2012.07683.x

  • Köhler F, Flechtner G (2007) Coleoptera (Käfer). Naturwaldreservate in Hessen 7/2.2 Hohestein. Zoologische Untersuchungen 1994–1996, Teil 2. Wiesbaden

  • Konvička M, Benes J, Schmitt T (2010) Ecological limits vis-à-vis changing climate: Relic Erebia butterflies in insular Sudeten mountains. In: Habel JC, Assmann T (eds) Relict species: phylogeography and conservation biology. Springer, Heidelberg, pp 341–355

    Chapter  Google Scholar 

  • Linder HP, Bykova O, Dyke J, Etienne RS, Hickler T, Kühn I, Marion G, Ohlemüller R, Schymanski SJ, Singer A (2012) Biotic modifiers, environmental modulation and species distribution models. J Biogeogr 39(12):2179–2190. doi:10.1111/j.1365-2699.2012.02705.x

    Article  Google Scholar 

  • Lindroth CH (1957) The faunal connections between Europe and North America. Almqvist and Wiksell and John Wiley and Sons, Stockholm and New York

    Google Scholar 

  • Lorenz WMT (2003) Rote Liste gefährdeter Lauf- und Sandlaufkäfer (Coleoptera Carabidae s. l.) Bayerns. Schriftenreihe Bayerisches Landesamt für Umweltschutz 166:102–111

    Google Scholar 

  • Loss SR, Terwilliger LA, Peterson AC (2011) Assisted colonization: integrating conservation strategies in the face of climate change. Biol Conserv 144(1):92–100. doi:10.1016/j.biocon.2010.11.016

    Article  Google Scholar 

  • Malausa JC, Drescher J (1991) The project to rescue the Italian ground beetle Chrysocarabus olympiae. Int Zoo Yearb 30:75–79

    Article  Google Scholar 

  • Matern A, Drees C, Desender K, Gaublomme E, Paill W, Assmann T (2009) Genetic diversity and population structure of the endangered insect species Carabus variolosus in its western distribution range: implications for conservation. Conserv Genet 10(2):391–405

    Article  Google Scholar 

  • Mateus CS, Almeida PR, Quintella BR, Alves MJ (2011) MtDNA markers reveal the existence of allopatric evolutionary lineages in the threatened lampreys Lampetra fluviatilis (L.) and Lampetra planeri (Bloch) in the Iberian glacial refugium. Conserv Genet 12:1061–1074

    Article  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: biodiversity synthesis. Island Press, Washington

    Google Scholar 

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9(10):373–375

    Article  PubMed  CAS  Google Scholar 

  • Müller-Motzfeld G, Schmidt J (in press) Rote Liste Laufkäfer (Coleoptera: Carabidae). Naturschutz und Biologische Vielfalt

  • Nakićenović N, Swart R (eds) (2000) Special report on emissions scenarios: a special report of working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press

  • Nazeri M, Jusoff K, Madani N, Mahmud AR, Bahman AR, Kumar L (2012) Predictive modeling and mapping of Malayan sun bear (Helarctos malayanus) distribution using maximum entropy. PLoS ONE 7:e48104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA*master site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156

    Article  Google Scholar 

  • Pellissier L, Pradervand J-N, Pottier J, Dubuis A, Maiorano L, Guisan A (2012) Climate-based empirical models show biased predictions of butterfly communities along environmental gradients. Ecography 35(8):684–692. doi:10.1111/j.1600-0587.2011.07047.x

    Article  Google Scholar 

  • Ramirez J, Jarvis A (2008) High resolution statistically downscaled future climate surfaces. International Center for Tropical Agriculture (CIAT). CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia

  • Rasplus JY, Garnier S, Meusnier S, Piry S, Mondor G, Audiot P, Cornuet J-M (2001) Setting conservation priorities: the case study of Carabus solieri (Col. Carabidae). Genet Sel Evol 33(1):141–175

    Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17(1):230–237

    Article  Google Scholar 

  • Reilly SB, Marks SB, Jennings WB (2012) Defining evolutionary boundaries across parapatric ecomorphs of Black Salamanders (Aneides flavipunctatus) with conservation implications. Mol Ecol 21(23):5745–5761

    Article  PubMed  Google Scholar 

  • Rödder D, Dambach J (2010) Bioclimatic models as predictive GIS tools for the identification of potential refugia and possible migration pathways. In: Habel J, Assmann T (eds) Relict species. phylogeography and conservation biology, Springer, pp 273–284

    Google Scholar 

  • Sachs L (1997) Angewandte Statistik: Anwendung statistischer Methoden Springer, Berlin

  • Schlaepfer DR, Lauenroth WK, Bradford JB (2012) Effects of ecohydrological variables on current and future ranges, local suitability patterns, and model accuracy in big sagebrush. Ecography 35(4):374–384. doi:10.1111/j.1600-0587.2011.06928.x

    Article  Google Scholar 

  • Schloss CA, Nunez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc Natl Acad Sci U S A 109(22):8606–8611. doi:10.1073/pnas.1116791109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schönswetter P, Tribsch A, Stehlik I, Niklfeld H (2004) Glacial history of high alpine Ranunculus glacialis (Ranunculaceae) in the European Alps in a comparative phylogeographical context. Biol J Linn Soc 81:183–195

    Article  Google Scholar 

  • Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Conserv 155:149–156. doi:10.1016/j.biocon.2012.06.011

    Article  Google Scholar 

  • Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology 89(12):3472–3479

    Article  PubMed  Google Scholar 

  • Schweiger O, Heikkinen RK, Harpke A, Hickler T, Klotz S, Kudrna O, Kühn I, Pöyry J, Settele J (2012) Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Global Ecol Biogeogr 21(1):88–99. doi:10.1111/j.1466-8238.2010.00607.x

    Article  Google Scholar 

  • Schwöppe M, Kreuels M, Weber F (1998) Zur Frage der historisch oder ökologisch bedingten Begrenzung des Vorkommens einer waldbewohnenden, ungeflügelten Carabidenart: translokationsexperimente unter kontrollierten Bedingungen mit Carabus auronitens im Münsterland. Abhandlungen aus dem Landesmuseum für Naturkunde zu Münster in Westfalen 60(1):3–77

    Google Scholar 

  • Settele J, Dover J, Dolek M, Konvicka M (2009) Butterflies of European ecosystems: impact of land-use and options for conservation management. In: Settele J, Shreeve T, Konvicka M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 353–370

    Google Scholar 

  • Sokolár F (1909) Carabus irregularis F. Entomologische Rundschau 1909:87–89

    Google Scholar 

  • Svenning JC, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • Taubmann J, Theissinger K, Feldheim KA, Laube I, Graf W, Haase P, Johannesen J, Pauls SU (2011) Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conserv Genet 12:503–515

    Article  Google Scholar 

  • Thiele HU (1977) Carabid beetles in their environments. Springer, Berlin

    Book  Google Scholar 

  • Turin H, Penev L, Casale A, Arndt E, Assmann T, Makarov KV, Mossakowski D, Szél G, Weber F, Turin H, Penev L, Casale A (eds) (2003) Species accounts. In: The genus Carabus in Europe—a synthesis. Pensoft Publishers and European Invertebrate Survey, Sofia, Moscow and Leiden, pp 151–283

  • Vigna-Taglianti A, Bonavita P, Bruschi S, Casale A, Chemini C, DeFelici S, Brandmayr P, Zetto Brandmayr T, Casale A, Vigna Taglianti A (eds) (2000) Carabus montivagus (Coleoptera, Carabidae) in the Italian Central Alps: relict or introduced by man? In: Natural history and applied ecology of carabid beetles. Pensoft, Sofia, pp 61–70

  • Vogler AP, DeSalle R (1994) Diagnosing units of conservation management. Conserv Biol 8:354–363

    Article  Google Scholar 

  • Vogler AP, Knisley CB, Glueck SB, Hill JM, DeSalle R (1993a) Using molecular and ecological data to diagnose endangered populations of the puritan tiger beetle Cicindela puritana. Mol Ecol 2:375–383

    Article  PubMed  CAS  Google Scholar 

  • Vogler AP, DeSalle R, Assmann T, Knisley B, Schultz TD (1993b) Molecular population genetics of the endangered tiger beetle Cicindela dorsalis (Coleoptera: Cicindelidae). Ann Entomol Soc Am 86:142–152

    Google Scholar 

  • Wachter GA, Arthofer W, Dejaco T, Rinnhofer LJ, Steiner FM, Schlick-Steiner BC (2012) Pleistocene survival on central Alpine nunataks: genetic evidence from the jumping bristletail Machilis pallida. Mol Ecol 21:4983–4995

    Article  PubMed  Google Scholar 

  • Waltari E, Hijmans RJ, Peterson AT, Nyári AS, Perkins SL, Guralnick RP (2007) Locating pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE 2(7):e563

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber F (1966) Zur Verbreitung von Carabus irregularis Fabr. im Teutoburger Wald und Eggegebirge (Westfalen). Entomologische Blätter für Biologie und Systematik der Käfer (Krefeld) 62:1–5

    Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Change Biol 13(9):1873–1887. doi:10.1111/j.1365-2486.2007.01418.x

    Article  Google Scholar 

Download references

Acknowledgments

K.H. was supported by a PhD scholarship from the German Federal Environmental Foundation (DBU; AZ 20009/055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Homburg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homburg, K., Brandt, P., Drees, C. et al. Evolutionarily significant units in a flightless ground beetle show different climate niches and high extinction risk due to climate change. J Insect Conserv 18, 781–790 (2014). https://doi.org/10.1007/s10841-014-9685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-014-9685-x

Keywords

Navigation