Skip to main content

Advertisement

Log in

The value of terrestrial ecotones as refuges for winter damselflies (Odonata: Lestidae)

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Habitat requirements of many species may vary significantly throughout the lifecycle. Species are often forced to exchange their habitats to meet requirements of different life stages. Due to the effect of human activities, however, there is a loss of habitat complexity and a consequent disappearance of species associated with multiple habitat types. This also applies to freshwater invertebrates occurring in temporary habitats. However, it appears that many species are able to meet their habitat requirements even in a human-altered landscape. The aim of this study was to analyze the habitat preferences of the damselfly Sympecma fusca in an area significantly influenced by human interventions. According to the results of a capture-mark-recapture study and generalized additive models, I found that, during a pre-reproductive period (in the autumn), imagoes utilize predominantly insolated ecotones, which constitute only a small fraction of the available terrestrial habitat. During the reproductive period (in spring), however, imagoes completely change their priorities in favor of reproductive success. At this time, males use ecotones only in adverse weather conditions. Ecotones allow the species to survive a long pre-reproductive period. However, suitable habitat conditions may be lost because of inappropriate interventions (e.g., mowing). These small-scale interventions often resemble natural disturbances and may not necessarily lead to the extinction of an entire population. Imagoes are able to move on to different habitat patches, but only if they have alternative habitats. This outcome indicates that maintaining a high heterogeneity of keystone structures is crucial for maintaining high levels of biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bond AB, Kamil AC (2006) Spatial heterogeneity, predator cognition, and the evolution of color polymorphism in virtual prey. Proc Natl Acad Sci USA 103:3214–3219. doi:10.1073/pnas.0509963103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borisov SN (2006) Adaptations of dragonflies (Odonata) under desert conditions. Entomol Rev 86:534–543. doi:10.1134/S0013873806050058

    Article  Google Scholar 

  • Cooch E, White G (eds) (2016) Program MARK “A Gentle Introduction,” 14th edn. Colorado State University, Fort Collins, Colorado

    Google Scholar 

  • Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata, Harley Books, Colchester

    Google Scholar 

  • Cordero-Rivera A (2005) Forests and Dragonflies. Fourth WDA International Symposium of Odonatology, Pontevedra (Spain), Pensoft Publishers, Sofia

    Google Scholar 

  • Dolný A, Harabiš F, Bárta D et al (2012) Aquatic insects indicate terrestrial habitat degradation: changes in taxonomical structure and functional diversity of dragonflies in tropical rainforest of East Kalimantan. Trop Zool 25:141–157. doi:10.1080/03946975.2012.717480

    Article  Google Scholar 

  • Dunn CP, Heneghan L (2011) Composition and diversity of urban vegetation. In: Breuste JH, Elmqvist T, Guntenspergen G et al (eds) Urban Ecology patterns, processes and aplications, Oxford University Press, New York, pp 103–114

    Chapter  Google Scholar 

  • Foote LA, Rice Hornung CL (2005) Odonates as biological indicators of grazing effects on Canadian prairie wetlands. Ecol Entomol 30:273–283. doi:10.1111/j.0307-6946.2005.00701.x

    Article  Google Scholar 

  • Harabiš F, Dolný A, Šipoš J (2012) Enigmatic adult overwintering in damselflies: coexistence as weaker intraguild competitors due to niche separation in time. Popul Ecol 54:549–556. doi:10.1007/s10144-012-0331-8

    Article  Google Scholar 

  • Holland MMP, Risser G, Nairman RJ (1991) Ecotones: the role of landscape boundaries in the management and restoration of changing environments, Routledge, Chapman and Hall, New York

    Book  Google Scholar 

  • Jödicke R (1997) Die Binsenjungfern und Winterlibellen Europas: Lestidae. Die Neue Brehm-Bücherei; Bd. 631, Die Libellen Europas-Band 3), Westarp Wissenschaften, Magdeburg

    Google Scholar 

  • Kotze J, Venn S, Niemela J, Spence J (2011) Effects of urbanization on the ecology and evolution of arthropods. In: Niemelä J, Breuste JJ, Guntenspergen G et al (eds) Urban Ecology: patterns, processes, and applications, Oxford University Press, Oxford, pp 159–166

    Chapter  Google Scholar 

  • Leather SR, Walters KFA, Bale JS (1996) The ecology of insect overwintering, Cambridge University Press, Cambridge

    Google Scholar 

  • Lebreton J, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Manger R, Dingemanse NJ (2009) Adult survival of Sympecma paedisca (Brauer) during hibernation (Zygoptera: Lestidae). Odonatologica 38:55–59

    Google Scholar 

  • Martens A (2001) Initial preference of oviposition sites: discrimination between living and dead plant material in Sympecma fusca and Coenagrion caerulescens (Odonata: Lestidae, Coenagrionidae). Eur J Entomol 98:121–123. doi:10.14411/eje.2001.021

    Article  Google Scholar 

  • McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev Camb Philos Soc 73:181–201. doi:10.1017/S000632319700515X

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. doi:10.1016/j.biocon.2005.09.005

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453

    Article  CAS  PubMed  Google Scholar 

  • Nielsen AB, van den Bosch M, Maruthaveeran S, van den Bosch CK (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosyst 17:305–327. doi:10.1007/s11252-013-0316-1

    Article  Google Scholar 

  • Noble A, Hassall C (2014) Poor ecological quality of urban ponds in Northern England: causes and consequences. Urban Ecosyst 18:649–662. doi:10.1007/s11252-014-0422-8

    Article  Google Scholar 

  • Oliver TH, Roy DB, Hill JK et al (2010) Heterogeneous landscapes promote population stability. Ecol Lett 13:473–484. doi:10.1111/j.1461-0248.2010.01441.x

    Article  PubMed  Google Scholar 

  • R development Core TEAM (2015) R: a language and environment for statistical computing. the R Foundation for Statistical Computing, Vienna, Austria. Available online at http://www.R-project.org/

  • Raebel EM, Merckx T, Riordan P et al (2010) The dragonfly delusion: why it is essential to sample exuviae to avoid biased surveys. J Insect Conserv 14:523–533. doi:10.1007/s10841-010-9281-7

    Article  Google Scholar 

  • Remsburg AJ, Olson AC, Samways MJ (2008) Shade alone reduces adult dragonfly (Odonata: Libellulidae) abundance. J Insect Behav 21:460–468. doi:10.1007/s10905-008-9138-z

    Article  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford Biol 17:249. doi:10.1093/acprof

    Google Scholar 

  • Sahlén G, Ekestubbe K (2001) Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodivers Conserv 10:673–690. doi:10.1023/A:1016681524097

    Article  Google Scholar 

  • Samraoui B, Bouzid S, Boulahbal R, Corbet PS (1998) Postponed reproductive maturation in upland refuges maintains life-cycle continuity during the hot, dry season in Algerian dragonflies (Odonata: Anisoptera). Int J Odonatol 1:119–135. doi:10.1080/13887890.1998.9748100

    Article  Google Scholar 

  • Samways MJ, Sharratt NJ, Simaika JP (2010) Effect of alien riparian vegetation and its removal on a highly endemic river macroinvertebrate community. Biol Invasions 13:1305–1324. doi:10.1007/s10530-010-9891-8

    Article  Google Scholar 

  • Schmidt B (1993) Die Sibirische Winterlibelle (Odonata) im südwestlichen Alpenvorland. Carolinea 51:83–92

    Google Scholar 

  • Stevens M, Merilaita S (2009) Animal camouflage: current issues and new perspectives. Philos Trans R Soc London B 364:423–427. doi:10.1098/rstb.2008.0217

    Article  Google Scholar 

  • Stoks R, Córdoba-Aguilar A (2012) Evolutionary ecology of Odonata: a complex life cycle perspective. Annu Rev Entomol 57:249–265. doi:10.1146/annurev-ento-120710-100557

    Article  CAS  PubMed  Google Scholar 

  • Suhling F, Jödicke R, Schneider W (2003) Odonata of African arid regions—are there desert species? Cimbebasia 18:207–224

    Google Scholar 

  • Suhling F, Sahlén G, Kalkman V et al (2015) Odonata. In: Thorp J, Rogers C, Tockner K (eds) Thorp and Covich’s freshwater invertebrates, Academic Press, Amsterdam, pp 893–932

  • Suhonen J, Hilli-Lukkarinen M, Korkeamäki E et al (2010) Local extinction of dragonfly and damselfly populations in low- and high-quality habitat patches. Conserv Biol 24:1148–1153. doi:10.1111/j.1523-1739.2010.01504.x

    Article  PubMed  Google Scholar 

  • Tews J, Brose U, Grimm V et al (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92. doi:10.1046/j.0305-0270.2003.00994.x

    Article  Google Scholar 

  • Thomas JA, Morris MG, Hambler C (1994) Patterns, mechanisms and rates of extinction among invertebrates in the United Kingdom [and discussion]. Philos Trans R Soc B Biol Sci 344:47–54. doi:10.1098/rstb.1994.0050

    Article  Google Scholar 

  • Thomas JA, Telfer MG, Roy DB et al (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881. doi:10.1126/science.1095046

    Article  CAS  PubMed  Google Scholar 

  • Willigalla C, Fartmann T (2012) Patterns in the diversity of dragonflies (Odonata) in cities across central Europe Eur J Entomol 109:235–245. doi:10.14411/eje.2012.031

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B (Statistical Methodol) 73:3–36. doi:10.1111/j.1467-9868.2010.00749.x

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Internal Grant Agency of Czech University of Life Sciences Prague (42110/1312/3118). I would like to thank Zuzana Jablonická and Stanislav Švaček for their assistance in collecting data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Harabiš.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harabiš, F. The value of terrestrial ecotones as refuges for winter damselflies (Odonata: Lestidae). J Insect Conserv 20, 971–977 (2016). https://doi.org/10.1007/s10841-016-9929-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-016-9929-z

Keywords

Navigation