Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 6/2014

01.12.2014

Knowledge-based systems using neural networks for electron beam welding process of reactive material (Zircaloy-4)

verfasst von: M. N. Jha, D. K. Pratihar, A. V. Bapat, V. Dey, Maajid Ali, A. C. Bagchi

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bead-on-plate welding of zircaloy-4 (a reactive material) plates was conducted using electron beam according to central composite design of experiments. Its predictive models were developed in the form of knowledge-based systems in both forward and reverse directions using neural networks. Input parameters considered for this welding of reactive metals were accelerating voltage, beam current and weld speed. The responses of the welding process were measured in terms of bead width, depth of penetration and micro-hardness. Forward mapping of the welding process was conducted using regression analysis, back-propagation neural network (BPNN), genetic algorithm-tuned neural network (GANN) and particle swarm optimization algorithm-tuned neural network (PSONN). Reverse mapping of this process was also carried out using the BPNN, GANN and PSONN-based approaches. Neural network-based approaches could model this welding process of reactive material in both forward and reverse directions efficiently, which is required for the automation of the same. The performance of the neural network models was found to be data-dependent. The BPNN could outperform the other two approaches for most of the cases but not all in both the forward and reverse mappings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Technical Data Sheet of Reactor grade zirconium available from http://​www.​atimetals.​com.
 
Literatur
Zurück zum Zitat Ahmad, M., Akhter, J. I., Shaikh, M. A., Akhtar, M., Iqbal, M., & Chaudhary, M. A. (2002). Hardness and microstructural studies of electron beam welded joints of Zircaloy-4 and stainless steel. Journal of Nuclear Materials, 301, 118–121. Ahmad, M., Akhter, J. I., Shaikh, M. A., Akhtar, M., Iqbal, M., & Chaudhary, M. A. (2002). Hardness and microstructural studies of electron beam welded joints of Zircaloy-4 and stainless steel. Journal of Nuclear Materials, 301, 118–121.
Zurück zum Zitat Amarnath, M. V. V., & Pratihar, D. K. (2009). Forward and reverse mappings of TIG welding process using radial basis function neural networks (RBFNNs). In Proceedings of IMechE, Part B: Journal of Engineering Manufacture (Vol. 223, pp. 1575–1590). Amarnath, M. V. V., & Pratihar, D. K. (2009). Forward and reverse mappings of TIG welding process using radial basis function neural networks (RBFNNs). In Proceedings of IMechE, Part B: Journal of Engineering Manufacture (Vol. 223, pp. 1575–1590).
Zurück zum Zitat Benyounis, K. Y., Olabi, A. G., & Hashmi, M. S. J. (2005). Effect of laser welding parameters on the heat input and weld-bead profile. Journal of Materials Processing Technology, 164–165, 978–985.CrossRef Benyounis, K. Y., Olabi, A. G., & Hashmi, M. S. J. (2005). Effect of laser welding parameters on the heat input and weld-bead profile. Journal of Materials Processing Technology, 164–165, 978–985.CrossRef
Zurück zum Zitat Bhadeshia, H. K. D. H. (1999). Neural networks in materials science. ISIJ International, 39(10), 967–975.CrossRef Bhadeshia, H. K. D. H. (1999). Neural networks in materials science. ISIJ International, 39(10), 967–975.CrossRef
Zurück zum Zitat Chi, C. T., & Chao, C. G. (2007). Characterization on electron beam welds and parameters for AZ31B-F extrusive plates. Journal of Material Processing Technology, 182, 369–373.CrossRef Chi, C. T., & Chao, C. G. (2007). Characterization on electron beam welds and parameters for AZ31B-F extrusive plates. Journal of Material Processing Technology, 182, 369–373.CrossRef
Zurück zum Zitat Choi, B. H., & Choi, B. K. (2008). The effect of welding conditions according to mechanical properties of pure titanium. Journal of Materials Processing Technology, 201, 526–530.CrossRef Choi, B. H., & Choi, B. K. (2008). The effect of welding conditions according to mechanical properties of pure titanium. Journal of Materials Processing Technology, 201, 526–530.CrossRef
Zurück zum Zitat Cook, G., Barnett, R. J., Andersen, K., & Strauss, A. M. (1995). Weld modeling and control using artificial neural networks. IEEE Transactions on Industry Applications, 31(6), 1484–1491.CrossRef Cook, G., Barnett, R. J., Andersen, K., & Strauss, A. M. (1995). Weld modeling and control using artificial neural networks. IEEE Transactions on Industry Applications, 31(6), 1484–1491.CrossRef
Zurück zum Zitat Dey, V., Pratihar, D. K., & Datta, G. L. (2010). Forward and reverse modeling of electron beam welding process using radial basis function neural networks. International Journal of Knowledge-based and Intelligent Engineering Systems, 14(4), 201–215. Dey, V., Pratihar, D. K., & Datta, G. L. (2010). Forward and reverse modeling of electron beam welding process using radial basis function neural networks. International Journal of Knowledge-based and Intelligent Engineering Systems, 14(4), 201–215.
Zurück zum Zitat Dey, V., Pratihar, D. K., Datta, G. L., Jha, M. N., Saha, T. K., & Bapat, A. V. (2010). Optimization and prediction of weldment profile in bead-on-plate welding of Al-1100 plates using electron beam. International Journal of Advanced Manufacturing Technology, 48, 513–528. Dey, V., Pratihar, D. K., Datta, G. L., Jha, M. N., Saha, T. K., & Bapat, A. V. (2010). Optimization and prediction of weldment profile in bead-on-plate welding of Al-1100 plates using electron beam. International Journal of Advanced Manufacturing Technology, 48, 513–528.
Zurück zum Zitat Dey, V., Pratihar, D. K., Datta, G. L., Jha, M. N., Saha, T. K., & Bapat, A. V. (2009). Optimization of bead geometry in electron beam welding using a Genetic Algorithm. Journal of Materials Processing Technology, 209, 1151–1157.CrossRef Dey, V., Pratihar, D. K., Datta, G. L., Jha, M. N., Saha, T. K., & Bapat, A. V. (2009). Optimization of bead geometry in electron beam welding using a Genetic Algorithm. Journal of Materials Processing Technology, 209, 1151–1157.CrossRef
Zurück zum Zitat Dutta, P., & Pratihar, D. K. (2007). Modeling of TIG welding process using conventional regression analysis and neural network-based approaches. Journal of Materials Processing Technology, 184, 56–68.CrossRef Dutta, P., & Pratihar, D. K. (2007). Modeling of TIG welding process using conventional regression analysis and neural network-based approaches. Journal of Materials Processing Technology, 184, 56–68.CrossRef
Zurück zum Zitat Elmer, J. W., Giedt, W. H., & Eagar, T. W. (1990). The transition from shallow to deep penetration during electron beam welding. Welding Journal, 69(5), 167s–176s. Elmer, J. W., Giedt, W. H., & Eagar, T. W. (1990). The transition from shallow to deep penetration during electron beam welding. Welding Journal, 69(5), 167s–176s.
Zurück zum Zitat Ganjigatti, J. P., Pratihar, D. K., & RoyChoudhury, A. (2007). Global versus cluster-wise regression analyses for prediction of bead geometry in MIG welding process. Journal of Materials Processing Technology, 189, 352–366.CrossRef Ganjigatti, J. P., Pratihar, D. K., & RoyChoudhury, A. (2007). Global versus cluster-wise regression analyses for prediction of bead geometry in MIG welding process. Journal of Materials Processing Technology, 189, 352–366.CrossRef
Zurück zum Zitat Gunaraj, V., & Murugan, N. (1999). Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. Journal of Materials Processing Technology, 88, 266–275.CrossRef Gunaraj, V., & Murugan, N. (1999). Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. Journal of Materials Processing Technology, 88, 266–275.CrossRef
Zurück zum Zitat Gunaraj, V., & Murugan, N. (1999). Prediction and comparison of the area of the heat affected zone for the bead-on-plate and bead-on-joint in submerged arc welding of pipes. Journal of Materials Processing Technology, 95, 246–261.CrossRef Gunaraj, V., & Murugan, N. (1999). Prediction and comparison of the area of the heat affected zone for the bead-on-plate and bead-on-joint in submerged arc welding of pipes. Journal of Materials Processing Technology, 95, 246–261.CrossRef
Zurück zum Zitat Gunaraj, V., & Murugan, N. (2000). Prediction and optimization of weld bead volume for the submerged arc process—Part 1. Welding Journal, 78, 286s–294s. Gunaraj, V., & Murugan, N. (2000). Prediction and optimization of weld bead volume for the submerged arc process—Part 1. Welding Journal, 78, 286s–294s.
Zurück zum Zitat Gunaraj, V., & Murugan, N. (2000). Prediction and optimization of weld bead volume for the submerged arc process—Part 2. Welding Journal, 78, 331s–338s. Gunaraj, V., & Murugan, N. (2000). Prediction and optimization of weld bead volume for the submerged arc process—Part 2. Welding Journal, 78, 331s–338s.
Zurück zum Zitat Hashimoto, T., & Matsuda, F. (1965). Effect of welding variables and materials upon bead shape in electron beam welding. Transactions of NIRM, 7(3), 96–109. Hashimoto, T., & Matsuda, F. (1965). Effect of welding variables and materials upon bead shape in electron beam welding. Transactions of NIRM, 7(3), 96–109.
Zurück zum Zitat Ho, C. Y. (2005). Fusion zone during focused electron-beam welding. Journal of Materials Processing Technology, 167, 265–272.CrossRef Ho, C. Y. (2005). Fusion zone during focused electron-beam welding. Journal of Materials Processing Technology, 167, 265–272.CrossRef
Zurück zum Zitat Huang, W., & Kovacevic, R. (2011). A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures. Journal of Intelligent Manufacturing, 22(2), 131–143.CrossRef Huang, W., & Kovacevic, R. (2011). A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures. Journal of Intelligent Manufacturing, 22(2), 131–143.CrossRef
Zurück zum Zitat Jha, M. N., Pratihar, D. K., Dey, V., Saha, T. K., & Bapat, A. V. (2011). Study on electron beam butt welding of austenitic stainless steel 304 plates and its input-output modeling using neural networks. In Proceedings of IMechE, Part B: Journal of Engineering Manufacture (Vol. 225, pp. 2051–2070). Jha, M. N., Pratihar, D. K., Dey, V., Saha, T. K., & Bapat, A. V. (2011). Study on electron beam butt welding of austenitic stainless steel 304 plates and its input-output modeling using neural networks. In Proceedings of IMechE, Part B: Journal of Engineering Manufacture (Vol. 225, pp. 2051–2070).
Zurück zum Zitat Kannatey, E. A. (2009). Willey series on processing of engineering materials. In Principles of laser materials processing. Kannatey, E. A. (2009). Willey series on processing of engineering materials. In Principles of laser materials processing.
Zurück zum Zitat Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks (pp. 1942–1948). Perth, Australia. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks (pp. 1942–1948). Perth, Australia.
Zurück zum Zitat Kim, D., Rhee, S., & Park, H. (2002). Modeling and optimization of a GMA welding process by genetic algorithm and response surface methodology. International Journal of Production Research, 40(7), 1699–1711.CrossRef Kim, D., Rhee, S., & Park, H. (2002). Modeling and optimization of a GMA welding process by genetic algorithm and response surface methodology. International Journal of Production Research, 40(7), 1699–1711.CrossRef
Zurück zum Zitat Kim, D., Kang, M., & Rhee, S. (2005). Determination of optimal welding conditions with a controlled random search procedure. Welding Journal, 90(8), 125s–130s. Kim, D., Kang, M., & Rhee, S. (2005). Determination of optimal welding conditions with a controlled random search procedure. Welding Journal, 90(8), 125s–130s.
Zurück zum Zitat Klemens, P. G. (1969). Energy considerations in electron beam welding. Journal of Electrochemical Society: Electochemical Science, 116(2), 196–198.CrossRef Klemens, P. G. (1969). Energy considerations in electron beam welding. Journal of Electrochemical Society: Electochemical Science, 116(2), 196–198.CrossRef
Zurück zum Zitat Koleva, E. (2001). Statistical modeling and computer programs for optimization of the electron beam welding of stainless steel. Vacuum, 62, 151–157.CrossRef Koleva, E. (2001). Statistical modeling and computer programs for optimization of the electron beam welding of stainless steel. Vacuum, 62, 151–157.CrossRef
Zurück zum Zitat Koleva, E. (2005). Electron beam weld parameters and thermal efficiency improvement. Vacuum, 77, 413–421.CrossRef Koleva, E. (2005). Electron beam weld parameters and thermal efficiency improvement. Vacuum, 77, 413–421.CrossRef
Zurück zum Zitat Lancaster, J. F. (1970). The metallurgy of welding, brazing and soldering. London: George Allan and Unwin. Lancaster, J. F. (1970). The metallurgy of welding, brazing and soldering. London: George Allan and Unwin.
Zurück zum Zitat Lin, H. L. (2012). The use of the Taguchi method with grey relational analysis and a neural network to optimize a novel GMA welding process. Journal of Intelligent Manufacturing, 23(5), 1671–1680.CrossRef Lin, H. L. (2012). The use of the Taguchi method with grey relational analysis and a neural network to optimize a novel GMA welding process. Journal of Intelligent Manufacturing, 23(5), 1671–1680.CrossRef
Zurück zum Zitat Miyazaki, T., & Giedt, W. H. (1982). Heat transfer from an elliptical cylinder moving through an infinite plate applied to electron beam welding. International Journal of Heat and Mass Transfer, 25(6), 807–814.CrossRef Miyazaki, T., & Giedt, W. H. (1982). Heat transfer from an elliptical cylinder moving through an infinite plate applied to electron beam welding. International Journal of Heat and Mass Transfer, 25(6), 807–814.CrossRef
Zurück zum Zitat Mollah, A. A., & Pratihar, D. K. (2008). Modeling of TIG welding and abrasive flow machining processes using radial basis function networks. International Journal of Advanced Manufacturing Technology, 37(9–10), 937–952. Mollah, A. A., & Pratihar, D. K. (2008). Modeling of TIG welding and abrasive flow machining processes using radial basis function networks. International Journal of Advanced Manufacturing Technology, 37(9–10), 937–952.
Zurück zum Zitat Montgomery, D. C. (1997). Design and analysis of experiments. New York: Wiley. Montgomery, D. C. (1997). Design and analysis of experiments. New York: Wiley.
Zurück zum Zitat Nagesh, D. S., & Datta, G. L. (2002). Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. Journal of Materials Processing Technology, 123, 303–312.CrossRef Nagesh, D. S., & Datta, G. L. (2002). Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. Journal of Materials Processing Technology, 123, 303–312.CrossRef
Zurück zum Zitat Okuyucu, H., Kurt, A., & Arcaklioglu, E. (2007). Articial neural network application to the friction stir welding of aluminum plates. Materials and Design, 28, 78–84.CrossRef Okuyucu, H., Kurt, A., & Arcaklioglu, E. (2007). Articial neural network application to the friction stir welding of aluminum plates. Materials and Design, 28, 78–84.CrossRef
Zurück zum Zitat Olabi, A. G., Casalino, G., Benyounis, K. Y., & Hashmi, M. S. J. (2006). An ANN and Taguchi algorithms integrated approach to the optimization of CO2 laser welding. Advances in Engineering Software, 37, 643–648.CrossRef Olabi, A. G., Casalino, G., Benyounis, K. Y., & Hashmi, M. S. J. (2006). An ANN and Taguchi algorithms integrated approach to the optimization of CO2 laser welding. Advances in Engineering Software, 37, 643–648.CrossRef
Zurück zum Zitat Petrov, P., Georgiev, C., & Petrov, G. (1998). Experimental investigation of weld pool formation in electron beam welding. Vacuum, 51, 339–343.CrossRef Petrov, P., Georgiev, C., & Petrov, G. (1998). Experimental investigation of weld pool formation in electron beam welding. Vacuum, 51, 339–343.CrossRef
Zurück zum Zitat Pratihar, D. K. (2008). Soft computing. India, New Delhi: Narosa Publishing House. Pratihar, D. K. (2008). Soft computing. India, New Delhi: Narosa Publishing House.
Zurück zum Zitat Rao, K. P., Angamuthu, K., & Srinivasan, P. B. (2008). Fracture toughness of electron beam welded Ti6Al4V. Journal of Materials Processing Technology, 199, 185–192.CrossRef Rao, K. P., Angamuthu, K., & Srinivasan, P. B. (2008). Fracture toughness of electron beam welded Ti6Al4V. Journal of Materials Processing Technology, 199, 185–192.CrossRef
Zurück zum Zitat Rudling, P., Strasser, A., & Garzarolli, F. (2007). Welding of Zirconium alloys, IZNA7 special topic report Welding of Zirconium Alloys. Rudling, P., Strasser, A., & Garzarolli, F. (2007). Welding of Zirconium alloys, IZNA7 special topic report Welding of Zirconium Alloys.
Zurück zum Zitat Saresh, N., Pillai, M. G., & Mathew, J. (2007). Investigations into the effects of electron beam welding on thick Ti-6Al-4V titanium alloy. Journal of Materials Processing Technology, 192–193, 83–88. Saresh, N., Pillai, M. G., & Mathew, J. (2007). Investigations into the effects of electron beam welding on thick Ti-6Al-4V titanium alloy. Journal of Materials Processing Technology, 192–193, 83–88.
Zurück zum Zitat Tay, K. M., & Butler, C. (1997). Modelling and optimizing of a MIG welding process a case study using experimental designs and neural networks. Quality and Reliability Engineering International, 13, 61–70.CrossRef Tay, K. M., & Butler, C. (1997). Modelling and optimizing of a MIG welding process a case study using experimental designs and neural networks. Quality and Reliability Engineering International, 13, 61–70.CrossRef
Zurück zum Zitat Thomas, G., Ramchandra, V., Ganeshan, R., & Vasudevan, R. (1993). Effect of pre- and post-weld heat treatments on the mechanical properties of electron beam welded Ti-6Al-4V alloy. Journal of Material Science, 28, 4892–4899. Thomas, G., Ramchandra, V., Ganeshan, R., & Vasudevan, R. (1993). Effect of pre- and post-weld heat treatments on the mechanical properties of electron beam welded Ti-6Al-4V alloy. Journal of Material Science, 28, 4892–4899.
Zurück zum Zitat Tonpe, S., Saibaba, N., Jayaraj, R. N., Ravi Shankar, A., Mudali, U. K., & Raj, B. (2011). Process development for fabrication of Zircaloy-4 dissolver assembly for reprocessing of spent nuclear fuel. Energy Procedia, 7, 459–467.CrossRef Tonpe, S., Saibaba, N., Jayaraj, R. N., Ravi Shankar, A., Mudali, U. K., & Raj, B. (2011). Process development for fabrication of Zircaloy-4 dissolver assembly for reprocessing of spent nuclear fuel. Energy Procedia, 7, 459–467.CrossRef
Zurück zum Zitat Vijayan, T., & Rohatgi, V. K. (1984). Physical behaviour of electron-beam fusion heat transfer and deep penetration in metals. International Journal of Heat and Mass Transfer, 27(11), 1985–1998.CrossRef Vijayan, T., & Rohatgi, V. K. (1984). Physical behaviour of electron-beam fusion heat transfer and deep penetration in metals. International Journal of Heat and Mass Transfer, 27(11), 1985–1998.CrossRef
Zurück zum Zitat Vitek, J. M., Iskander, Y. S., Oblow, E. M., et al. (1998). Neural network modeling of pulsed-laser weld pool shapes in aluminum alloy weld. In Proceedings of 5th international conference on trends in welding research, Pine Mountain, GA (pp. 442–448) June 1–5. ASM, International. Vitek, J. M., Iskander, Y. S., Oblow, E. M., et al. (1998). Neural network modeling of pulsed-laser weld pool shapes in aluminum alloy weld. In Proceedings of 5th international conference on trends in welding research, Pine Mountain, GA (pp. 442–448) June 1–5. ASM, International.
Zurück zum Zitat Yang, L. J., Bibby, M. J., & Chandel, R. S. (1993). Linear regression equations for modeling the submerged-arc welding process. Journal of Materials Processing Technology, 39, 33–42.CrossRef Yang, L. J., Bibby, M. J., & Chandel, R. S. (1993). Linear regression equations for modeling the submerged-arc welding process. Journal of Materials Processing Technology, 39, 33–42.CrossRef
Metadaten
Titel
Knowledge-based systems using neural networks for electron beam welding process of reactive material (Zircaloy-4)
verfasst von
M. N. Jha
D. K. Pratihar
A. V. Bapat
V. Dey
Maajid Ali
A. C. Bagchi
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 6/2014
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-013-0732-3

Weitere Artikel der Ausgabe 6/2014

Journal of Intelligent Manufacturing 6/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.