Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 7/2020

19.12.2017

A data-driven method based on deep belief networks for backlash error prediction in machining centers

verfasst von: Zhe Li, Yi Wang, Kesheng Wang

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Backlash error occurs in a machining center may lead to a series of changes in the geometry of the components and subsequently deteriorate the overall performance of the equipment. Due to the uncertainty of mechanical wear between kinematic pairs, it is challenging to predict backlash error through physical models directly. An alternative method is to leverage data-driven models to map the degradation. This paper proposes a data-driven method for backlash error predication through Deep Belief Network (DBN). The proposed method focuses on the assessment of both current and future geometric errors for backlash error prediction and subsequent maintenance in machining centers. During the process of prognosis, a DBN via stacking Restricted Boltzmann Machines is constructed for backlash error prediction. Energy-based models enable DBN to mine information hidden behind highly coupled inputs, which makes DBN a feasible method for fault diagnosis and prognosis when the target condition is beyond the historical data. In the experiment, to confirm the effectiveness of deep learning for backlash error prediction, similar popular regression methods, including Support Vector Machine Regression and Back Propagation Neural Network, are employed to present a comprehensive comparison in both diagnosis and prognosis. The experimental results show that the performances of all these regression methods are acceptable in the diagnostic stage. In the prognostic stage, DBN demonstrates its superiority and significantly outperforms the other models for backlash error prediction in machining centers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aydın, İ., Karaköse, M., & Akın, E. (2015). Combined intelligent methods based on wireless sensor networks for condition monitoring and fault diagnosis. Journal of Intelligent Manufacturing, 26(4), 717–729.CrossRef Aydın, İ., Karaköse, M., & Akın, E. (2015). Combined intelligent methods based on wireless sensor networks for condition monitoring and fault diagnosis. Journal of Intelligent Manufacturing, 26(4), 717–729.CrossRef
Zurück zum Zitat Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1–127.CrossRef Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1–127.CrossRef
Zurück zum Zitat Carreira-Perpinan, M. A., & Hinton, G. (2005). On contrastive divergence learning. In AISTATS (Vol. 10, pp. 33–40). Citeseer Carreira-Perpinan, M. A., & Hinton, G. (2005). On contrastive divergence learning. In AISTATS (Vol. 10, pp. 33–40). Citeseer
Zurück zum Zitat Chen, C., Liu, Z., Zhang, Y., Chen, C. P., & Xie, S. (2016). Actuator backlash compensation and accurate parameter estimation for active vibration isolation system. IEEE Transactions on Industrial Electronics, 63(3), 1643–1654.CrossRef Chen, C., Liu, Z., Zhang, Y., Chen, C. P., & Xie, S. (2016). Actuator backlash compensation and accurate parameter estimation for active vibration isolation system. IEEE Transactions on Industrial Electronics, 63(3), 1643–1654.CrossRef
Zurück zum Zitat Cheng, Q., Zhao, H., Zhang, G., Gu, P., & Cai, L. (2014). An analytical approach for crucial geometric errors identification of multi-axis machine tool based on global sensitivity analysis. The International Journal of Advanced Manufacturing Technology, 75(1–4), 107–121.CrossRef Cheng, Q., Zhao, H., Zhang, G., Gu, P., & Cai, L. (2014). An analytical approach for crucial geometric errors identification of multi-axis machine tool based on global sensitivity analysis. The International Journal of Advanced Manufacturing Technology, 75(1–4), 107–121.CrossRef
Zurück zum Zitat Ciodaro, T., Deva, D., De Seixas, J., & Damazio, D. (2012). Online particle detection with neural networks based on topological calorimetry information. In Journal of physics: Conference series (Vol. 368, pp. 012030). IOP Publishing Ciodaro, T., Deva, D., De Seixas, J., & Damazio, D. (2012). Online particle detection with neural networks based on topological calorimetry information. In Journal of physics: Conference series (Vol. 368, pp. 012030). IOP Publishing
Zurück zum Zitat Er, M. J., Zhang, Y., Wang, N., & Pratama, M. (2016). Attention pooling-based convolutional neural network for sentence modelling. Information Sciences, 373, 388–403.CrossRef Er, M. J., Zhang, Y., Wang, N., & Pratama, M. (2016). Attention pooling-based convolutional neural network for sentence modelling. Information Sciences, 373, 388–403.CrossRef
Zurück zum Zitat Fines, J. M., & Agah, A. (2008). Machine tool positioning error compensation using artificial neural networks. Engineering Applications of Artificial Intelligence, 21(7), 1013–1026.CrossRef Fines, J. M., & Agah, A. (2008). Machine tool positioning error compensation using artificial neural networks. Engineering Applications of Artificial Intelligence, 21(7), 1013–1026.CrossRef
Zurück zum Zitat Gan, M., & Wang, C. (2016). Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mechanical Systems and Signal Processing, 72, 92–104.CrossRef Gan, M., & Wang, C. (2016). Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mechanical Systems and Signal Processing, 72, 92–104.CrossRef
Zurück zum Zitat Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., & Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500(7461), 168–174.CrossRef Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., & Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500(7461), 168–174.CrossRef
Zurück zum Zitat Hermann, M., Pentek, T., & Otto, B. (2015). Design principles for Industrie 4.0 scenarios: A literature review. Dortmund: Technische Universität Dortmund. Hermann, M., Pentek, T., & Otto, B. (2015). Design principles for Industrie 4.0 scenarios: A literature review. Dortmund: Technische Universität Dortmund.
Zurück zum Zitat Hinton, G. (2010). A practical guide to training restricted Boltzmann machines. Momentum, 9(1), 926. Hinton, G. (2010). A practical guide to training restricted Boltzmann machines. Momentum, 9(1), 926.
Zurück zum Zitat Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771–1800.CrossRef Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771–1800.CrossRef
Zurück zum Zitat Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R., Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.CrossRef Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R., Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.CrossRef
Zurück zum Zitat Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554.CrossRef Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554.CrossRef
Zurück zum Zitat Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.CrossRef Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.CrossRef
Zurück zum Zitat Kao, J., Yeh, Z.-M., Tarng, Y., & Lin, Y. (1996). A study of backlash on the motion accuracy of CNC lathes. International Journal of Machine Tools and Manufacture, 36(5), 539–550.CrossRef Kao, J., Yeh, Z.-M., Tarng, Y., & Lin, Y. (1996). A study of backlash on the motion accuracy of CNC lathes. International Journal of Machine Tools and Manufacture, 36(5), 539–550.CrossRef
Zurück zum Zitat Keyvanrad, M. A., & Homayounpour, M. M. (2014). A brief survey on deep belief networks and introducing a new object oriented MATLAB toolbox (DeeBNet V2. 1). arXiv preprint arXiv:1408.3264. Keyvanrad, M. A., & Homayounpour, M. M. (2014). A brief survey on deep belief networks and introducing a new object oriented MATLAB toolbox (DeeBNet V2. 1). arXiv preprint arXiv:​1408.​3264.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Paper presented at the proceedings of the 25th international conference on neural information processing systems (Vol. 1). Lake Tahoe, Nevada. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Paper presented at the proceedings of the 25th international conference on neural information processing systems (Vol. 1). Lake Tahoe, Nevada.
Zurück zum Zitat Kusiak, A. (2017). Smart manufacturing must embrace big data. Nature, 544(7648), 23.CrossRef Kusiak, A. (2017). Smart manufacturing must embrace big data. Nature, 544(7648), 23.CrossRef
Zurück zum Zitat LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.CrossRef LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.CrossRef
Zurück zum Zitat LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.CrossRef LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.CrossRef
Zurück zum Zitat Lee, K.-I., & Yang, S.-H. (2013). Measurement and verification of position-independent geometric errors of a five-axis machine tool using a double ball-bar. International Journal of Machine Tools and Manufacture, 70, 45–52.CrossRef Lee, K.-I., & Yang, S.-H. (2013). Measurement and verification of position-independent geometric errors of a five-axis machine tool using a double ball-bar. International Journal of Machine Tools and Manufacture, 70, 45–52.CrossRef
Zurück zum Zitat Li, J., Tao, F., Cheng, Y., & Zhao, L. (2015). Big data in product lifecycle management. The International Journal of Advanced Manufacturing Technology, 81(1–4), 667–684.CrossRef Li, J., Tao, F., Cheng, Y., & Zhao, L. (2015). Big data in product lifecycle management. The International Journal of Advanced Manufacturing Technology, 81(1–4), 667–684.CrossRef
Zurück zum Zitat Liu, H., Xue, X., & Tan, G. (2010). Backlash error measurement and compensation on the vertical machining center. Engineering, 2(06), 403.CrossRef Liu, H., Xue, X., & Tan, G. (2010). Backlash error measurement and compensation on the vertical machining center. Engineering, 2(06), 403.CrossRef
Zurück zum Zitat Mosallam, A., Medjaher, K., & Zerhouni, N. (2016). Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction. Journal of Intelligent Manufacturing, 27(5), 1037–1048.CrossRef Mosallam, A., Medjaher, K., & Zerhouni, N. (2016). Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction. Journal of Intelligent Manufacturing, 27(5), 1037–1048.CrossRef
Zurück zum Zitat Prasanga, D. K., Tanida, K., Mizoguchi, T., & Ohnishi, K. (2013). Evaluation of a backlash compensation method using two parallel thrust wires. In IEEE international symposium on industrial electronics (ISIE) (pp. 1–6). IEEE Prasanga, D. K., Tanida, K., Mizoguchi, T., & Ohnishi, K. (2013). Evaluation of a backlash compensation method using two parallel thrust wires. In IEEE international symposium on industrial electronics (ISIE) (pp. 1–6). IEEE
Zurück zum Zitat Ribeiro, B., Gonçalves, I., Santos, S., & Kovacec, A. (2011). Deep learning networks for off-line handwritten signature recognition. In C. San Martin & S.-W. Kim (Eds.), Proceedings of progress in pattern recognition, image analysis, computer vision, and applications: 16th Iberoamerican Congress, CIARP 2011, Pucón, Chile, November 15–18, 2011 (pp. 523–532). Berlin, Heidelberg: Springer Berlin Heidelberg. Ribeiro, B., Gonçalves, I., Santos, S., & Kovacec, A. (2011). Deep learning networks for off-line handwritten signature recognition. In C. San Martin & S.-W. Kim (Eds.), Proceedings of progress in pattern recognition, image analysis, computer vision, and applications: 16th Iberoamerican Congress, CIARP 2011, Pucón, Chile, November 15–18, 2011 (pp. 523–532). Berlin, Heidelberg: Springer Berlin Heidelberg.
Zurück zum Zitat Sainath, T. N., Mohamed, A.-R., Kingsbury, B., & Ramabhadran, B. (2013). Deep convolutional neural networks for LVCSR. In 2013 IEEE International conference on acoustics, speech and signal processing (pp. 8614–8618). IEEE Sainath, T. N., Mohamed, A.-R., Kingsbury, B., & Ramabhadran, B. (2013). Deep convolutional neural networks for LVCSR. In 2013 IEEE International conference on acoustics, speech and signal processing (pp. 8614–8618). IEEE
Zurück zum Zitat Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.CrossRef Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.CrossRef
Zurück zum Zitat Schwenke, H., Knapp, W., Haitjema, H., Weckenmann, A., Schmitt, R., & Delbressine, F. (2008). Geometric error measurement and compensation of machines: An update. CIRP Annals-Manufacturing Technology, 57(2), 660–675.CrossRef Schwenke, H., Knapp, W., Haitjema, H., Weckenmann, A., Schmitt, R., & Delbressine, F. (2008). Geometric error measurement and compensation of machines: An update. CIRP Annals-Manufacturing Technology, 57(2), 660–675.CrossRef
Zurück zum Zitat Seltzer, M. L., Yu, D., & Wang, Y. (2013 ). An investigation of deep neural networks for noise robust speech recognition. In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 7398–7402). IEEE Seltzer, M. L., Yu, D., & Wang, Y. (2013 ). An investigation of deep neural networks for noise robust speech recognition. In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 7398–7402). IEEE
Zurück zum Zitat Siguenza-Guzman, L., Saquicela, V., Avila-Ordóñez, E., Vandewalle, J., & Cattrysse, D. (2015). Literature review of data mining applications in academic libraries. The Journal of Academic Librarianship, 41(4), 499–510.CrossRef Siguenza-Guzman, L., Saquicela, V., Avila-Ordóñez, E., Vandewalle, J., & Cattrysse, D. (2015). Literature review of data mining applications in academic libraries. The Journal of Academic Librarianship, 41(4), 499–510.CrossRef
Zurück zum Zitat Slamani, M., Nubiola, A., & Bonev, I. A. (2012). Modeling and assessment of the backlash error of an industrial robot. Robotica, 30(07), 1167–1175.CrossRef Slamani, M., Nubiola, A., & Bonev, I. A. (2012). Modeling and assessment of the backlash error of an industrial robot. Robotica, 30(07), 1167–1175.CrossRef
Zurück zum Zitat Stryczek, R. (2016). A metaheuristic for fast machining error compensation. Journal of Intelligent Manufacturing, 27(6), 1209–1220. Stryczek, R. (2016). A metaheuristic for fast machining error compensation. Journal of Intelligent Manufacturing, 27(6), 1209–1220.
Zurück zum Zitat Tompson, J., Jain, A., LeCun, Y., & Bregler, C. (2014). Joint training of a convolutional network and a graphical model for human pose estimation. In Paper presented at the proceedings of the 27th international conference on neural information processing systems (Vol. 1). Montreal, Canada. Tompson, J., Jain, A., LeCun, Y., & Bregler, C. (2014). Joint training of a convolutional network and a graphical model for human pose estimation. In Paper presented at the proceedings of the 27th international conference on neural information processing systems (Vol. 1). Montreal, Canada.
Zurück zum Zitat Wang, K.-S., Li, Z., Braaten, J., & Yu, Q. (2015). Interpretation and compensation of backlash error data in machine centers for intelligent predictive maintenance using ANNs. Advances in Manufacturing, 3(2), 97–104.CrossRef Wang, K.-S., Li, Z., Braaten, J., & Yu, Q. (2015). Interpretation and compensation of backlash error data in machine centers for intelligent predictive maintenance using ANNs. Advances in Manufacturing, 3(2), 97–104.CrossRef
Zurück zum Zitat Xiong, H. Y., Alipanahi, B., Lee, L. J., Bretschneider, H., Merico, D., Yuen, R. K., et al. (2015). The human splicing code reveals new insights into the genetic determinants of disease. Science, 347(6218), 1254806.CrossRef Xiong, H. Y., Alipanahi, B., Lee, L. J., Bretschneider, H., Merico, D., Yuen, R. K., et al. (2015). The human splicing code reveals new insights into the genetic determinants of disease. Science, 347(6218), 1254806.CrossRef
Zurück zum Zitat Yu, D., & Deng, L. (2011). Deep learning and its applications to signal and information processing [exploratory dsp]. IEEE Signal Processing Magazine, 28(1), 145–154.CrossRef Yu, D., & Deng, L. (2011). Deep learning and its applications to signal and information processing [exploratory dsp]. IEEE Signal Processing Magazine, 28(1), 145–154.CrossRef
Zurück zum Zitat Zhang, Y., Er, M. J., Zhao, R., & Pratama, M. (2017). Multiview convolutional neural networks for multidocument extractive summarization. IEEE Transactions on Cybernetics, 47(10), 3230–3242.CrossRef Zhang, Y., Er, M. J., Zhao, R., & Pratama, M. (2017). Multiview convolutional neural networks for multidocument extractive summarization. IEEE Transactions on Cybernetics, 47(10), 3230–3242.CrossRef
Zurück zum Zitat Zhang, Y., Yang, J., & Zhang, K. (2013). Geometric error measurement and compensation for the rotary table of five-axis machine tool with double ballbar. The International Journal of Advanced Manufacturing Technology, 65(1–4), 275–281.CrossRef Zhang, Y., Yang, J., & Zhang, K. (2013). Geometric error measurement and compensation for the rotary table of five-axis machine tool with double ballbar. The International Journal of Advanced Manufacturing Technology, 65(1–4), 275–281.CrossRef
Zurück zum Zitat Zhong, G., Wang, C., Yang, S., Zheng, E., & Ge, Y. (2015). Position geometric error modeling, identification and compensation for large 5-axis machining center prototype. International Journal of Machine Tools and Manufacture, 89, 142–150.CrossRef Zhong, G., Wang, C., Yang, S., Zheng, E., & Ge, Y. (2015). Position geometric error modeling, identification and compensation for large 5-axis machining center prototype. International Journal of Machine Tools and Manufacture, 89, 142–150.CrossRef
Zurück zum Zitat Zhou, S., Chen, Q., & Wang, X. (2010). Discriminative Deep Belief networks for image classification. In 2010 IEEE international conference on image processing (pp. 1561–1564). IEEE Zhou, S., Chen, Q., & Wang, X. (2010). Discriminative Deep Belief networks for image classification. In 2010 IEEE international conference on image processing (pp. 1561–1564). IEEE
Zurück zum Zitat Zhu, S., Ding, G., Qin, S., Lei, J., Zhuang, L., & Yan, K. (2012). Integrated geometric error modeling, identification and compensation of CNC machine tools. International Journal of Machine Tools and Manufacture, 52(1), 24–29.CrossRef Zhu, S., Ding, G., Qin, S., Lei, J., Zhuang, L., & Yan, K. (2012). Integrated geometric error modeling, identification and compensation of CNC machine tools. International Journal of Machine Tools and Manufacture, 52(1), 24–29.CrossRef
Metadaten
Titel
A data-driven method based on deep belief networks for backlash error prediction in machining centers
verfasst von
Zhe Li
Yi Wang
Kesheng Wang
Publikationsdatum
19.12.2017
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 7/2020
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-017-1380-9

Weitere Artikel der Ausgabe 7/2020

Journal of Intelligent Manufacturing 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.