Skip to main content

Advertisement

Log in

Cyclodextrin based novel drug delivery systems

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The versatile pharmaceutical material cyclodextrin’s (CDs) are classified into hydrophilic, hydrophobic, and ionic derivatives. By the early 1950s the basic physicochemical characteristics of cyclodextrins had been discovered, since than their use is a practical and economical way to improve the physicochemical and pharmaceutical properties such as solubility, stability, and bioavailability of administered drug molecules. These CDs can serve as multi-functional drug carriers, through the formation of inclusion complex or the form of CD/drug conjugate and, thereby potentially serving as novel drug carriers. This contribution outlines applications and comparative benefits of use of cyclodextrins (CDs) and their derivatives in the design of novel delivery systems like liposomes, microspheres, microcapsules, nanoparticles, cyclodextrin grafted cellulosic fabric, hydrogels, nanosponges, beads, nanogels/nanoassemblies and cyclodextrin-containing polymers. The article also focuses on the ability of CDs to enhance the drug absorption across biological barriers, the ability to control the rate and time profiles of drug release, drug safety, drug stability, and the ability to deliver a drug to targeted site. The article highlight’s on needs, limitations and advantages of CD based delivery systems. CDs, because of their continuing ability to find several novel applications in drug delivery, are expected to solve many problems associated with the delivery of different novel drugs through different delivery routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Connors, K.A.: Population characteristics of cyclodextrin complex stabilities in aqueous solution. J. Pharm. Sci. 84, 843–848 (1995)

    Article  CAS  Google Scholar 

  2. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  3. Ueda, H., Endo, T.: Large-ring cyclodextrins. In: Dodziuk, H. (ed.) Cyclodextrins and their Complexes. Chemistry, Analytical Methods, Applications, pp. 370–380. Wiley-VCH Verlag, Weinheim (2006)

    Chapter  Google Scholar 

  4. Larsen, K.L.: Large cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 43, 1–13 (2002)

    Article  CAS  Google Scholar 

  5. Loftsson, T., Brewester, M.: Pharmaceutical applications of cyclodextrins. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  6. Szejtli, J.: Cyclodextrin Technology. Kluwer Academic, Dordrecht (1988)

    Google Scholar 

  7. Szente, L., Szejtli, J.: Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv. Drug Deliv. Rev. 36, 17–38 (1999)

    Article  CAS  Google Scholar 

  8. Matsuda, H., Arima, H.: Cyclodextrins in transdermal and rectal delivery. Adv. Drug Deliv. Rev. 36, 81–99 (1999)

    Article  CAS  Google Scholar 

  9. Hirayama, F., Uekama, K.: Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev. 36, 125–141 (1999)

    Article  CAS  Google Scholar 

  10. Bilati, U., Allémann, E., Doelker, E.: Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur. J. Pharm. Biopharm. 59, 375–388 (2005)

    Article  CAS  Google Scholar 

  11. Uekama, K., et al.: Sustained release of buserelin, a luteinizing hormone-releasing hormone agonist, from an injectable oily preparation utilizing ethylated β-cyclodextrin. J. Pharm. Pharmacol. 41, 874–876 (1989)

    CAS  Google Scholar 

  12. Loftsson, T., Brewster, M.E., Másson, M.: Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv. 2(4), 261–275 (2004)

    Article  CAS  Google Scholar 

  13. Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins in vivo drug delivery. J. Pharm. Sci. 85, 1142–1168 (1996)

    Article  CAS  Google Scholar 

  14. Irie, T., Uekama, K.: Pharmaceutical applications of cyclodextrins: III. Toxicological issues and safety evaluation. J. Pharm. Sci. 86(2), 147–162 (1997)

    Article  CAS  Google Scholar 

  15. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  16. Thompson, D.O.: Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug Carrier Syst. 14, 1–104 (1997)

    CAS  Google Scholar 

  17. Szejtli, J.: Past, present, and future of cyclodextrin research. Pure Appl. Chem. 76(10), 1825–1845 (2004)

    Article  CAS  Google Scholar 

  18. Loftsson, T., Duchêne, D.: Historical perspectives: cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  Google Scholar 

  19. Schardinger, F.: Bildung kristallisierter Polysaccharide (Dextrine) aus Stärkekleister durch Microben. Zentralbl. Bakteriol. Parasitenk. Abt. 29(II), 188–197 (1911)

    Google Scholar 

  20. Freudenberg, K., Cramer, F.: Die Konstitution der Schardinger-Dextrine α, β und γ. Z. Naturforsch. 3b, 464 (1948)

    CAS  Google Scholar 

  21. Szejtli, J.: Medicinal applications of cyclodextrins. Res. Rev. 14, 353–386 (1994)

    Article  CAS  Google Scholar 

  22. Frömming, K.H., Szejtli, J.: Cyclodextrins in Pharmacy. Kluwer Academic, Dordrecht (1994)

    Google Scholar 

  23. Soliman, O.A.E., Kimura, K., Hirayama, F., Uekama, K., El-Sabbagh, H.M., El-Gawad, A.E.-G.H., Hashim, F.M.: Amorphous spironolactone-hydroxypropylated cyclodextrin complexes with superior dissolution and oral bioavailability. Int. J. Pharm. 149, 73–83 (1997)

    Article  CAS  Google Scholar 

  24. Savolainen, J., Jarvinen, K., Taipale, H., Jarho, P., Loftsson, T., Jarvinen, T.: Coadministration of a water-soluble polymer increases the usefulness of cyclodextrins in solid oral dosage forms. Pharm. Res. 15(11), 1696–1701 (1998)

    Article  CAS  Google Scholar 

  25. Wong, J.W., Yuen, K.H.: Improved oral bioavailability of artemisinin through inclusion complexation with β- and γ-cyclodextrin. Int. J. Pharm. 227, 177–185 (2001)

    Article  CAS  Google Scholar 

  26. Kikuchi, M., Hirayama, F., Uekama, K.: Improvement of oral and rectal bioavailabilities of carmofur by methylated β-cyclodextrin complexations. Int. J. Pharm. 38, 191–198 (1987)

    Article  CAS  Google Scholar 

  27. Evrard, B., Chiap, P., DeTullio, P., Ghalmi, F., Piel, G., Van Hees, T., Crommen, J., Losson, B., Delattre, L.: Oral bioavailability in sheep of albendazole from a suspension and from a solution containing hydroxypropyl-β-cyclodextrin. J. Control. Release 85(1–3), 45–50 (2002)

    Article  CAS  Google Scholar 

  28. Carrier, R.L., Miller, L.A., Ahmed, I.: The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release 123, 78–99 (2007)

    Article  CAS  Google Scholar 

  29. Gibaud, S., Zirar, S.B., Mutzenhardt, P., Fries, I., Astier, A.: Melarsoprol–cyclodextrins inclusion complexes. Int. J. Pharm. 306, 107–121 (2005) (ref 01)

    Article  CAS  Google Scholar 

  30. Szejtli, J., Szente, L.: Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur. J. Pharm. Biopharm. 61, 115–125 (2005)

    Article  CAS  Google Scholar 

  31. Weiszfeiler, V., Szejtli, J.: Bitterness reduction with beta-cyclodextrin. In: Huber, O., Szejtli, J. (eds.) Proc. Int. Symp. Cyclodextrins. Kluwer, Dordrecht, Neth. (1988) (CA:112:104658)

  32. Andersen, F.M., Bundgaard, H., Mengel, H.B.: Formation, bioavailability and organoleptic properties of an inclusion complex of femoxetine with beta-cyclodextrin. Int. J. Pharm. 21, 51–60 (1984) (CA101:235497)

    Google Scholar 

  33. Uekama, K., Oh, K., Otagiri, M., Seo, H., Tsuruoka, M.: Improvement of some pharmaceutical properties of clofibrate by cyclodextrin complexation. Pharm. Acta Helv. 58, 338–342 (1983)

    CAS  Google Scholar 

  34. Ragnoa, G., Cione, E., Garofalo, A., Genchi, G., Ioele, G., Risoli, A., Spagnoletta, A.: Design and monitoring of photostability systems for amlodipine dosage forms. Int. J. Pharm. 265, 125–132 (2003)

    Article  CAS  Google Scholar 

  35. Chen, X., Chen, R., Guo, Z., Li, C., Li, P.: The preparation and stability of the inclusion complex of astaxanthin with β-cyclodextrin. Food Chem. 101, 1580–1584 (2007)

    Article  CAS  Google Scholar 

  36. Karathanos, V.T., Mourtzinos, I., Yannakopoulou, K., Andrikopoulos, N.K.: Study of the solubility, antioxidant activity and structure inclusion complex of vanillin with β-cyclodextrin. Food Chem. 101, 652–658 (2007)

    Article  CAS  Google Scholar 

  37. Ayala-Zavala, J.F., Soto-Valdez, H., González-León, A., Álvarez-Parrilla, E., Martín-Belloso, O., González-Aguilar, G.A.: Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 60(3–4), 359–368 (2008)

    Article  CAS  Google Scholar 

  38. Lindner, K.: Using cyclodextrin aroma complexes in the catering. Food/Nahrung. 26(7–8), 675–680 (2006)

    Google Scholar 

  39. Lucas-Abellán, C., Fortea, I., López-Nicolás, J.M., Núñez-Delicado, E.: Cyclodextrins as resveratrol carrier system. Food Chem. 104(1), 39–44 (2007)

    Google Scholar 

  40. Kim, J.H., Lee, S.K., Ki, M.H., Choi, W.K., Ahn, S.K., Shin, H.J., Il Hong, C.: Development of parenteral formulation for a novel angiogenesis inhibitor, CKD-732 through complexation with hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 272, 79–89 (2004)

    Article  CAS  Google Scholar 

  41. Szejtli, J.: Cyclodextrin complexed generic drugs are generally not bio-equivalent with the reference products: therefore the increase in number of marketed drug/cyclodextrin formulations is so slow. J. Incl. Phenom. Macrocycl. Chem. 52, 1–11 (2005)

    Article  CAS  Google Scholar 

  42. Tasic, L.M., Jovanovic, M.D., Djuric, Z.R.: The influence of beta-cyclodextrin on the solubility and dissolution rate of paracetamol solid dispersions. J. Pharm. Pharmacol. 44, 52–55 (1992)

    CAS  Google Scholar 

  43. Connors, K.A.: Measurement of cyclodextrin complex stability constants. In: Szejtli, J., Osa, T. (eds.) Cyclodextrins. Comprehensive Supramolecular Chemistry, vol. 3, pp. 205–241. Elsevier Sciences, Oxford (1996)

    Google Scholar 

  44. Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 6(2), E329–E357 (2005)

    Article  Google Scholar 

  45. Becket, G., Schep, L.J., Tan, M.Y.: Improvement of the in vitro dissolution of praziquantal by complexation with alpha, beta and gamma-cyclodextrins. Int. J. Pharm. 179, 65–71 (1999)

    Article  CAS  Google Scholar 

  46. Cavallari, C., Abertini, B., Rodriguez, M.L.G., Rodriguez, L.: Improved dissolution behavior of steam granulated piroxicam. Eur. J. Pharm. Biopharm. 54, 65–73 (2002)

    Article  CAS  Google Scholar 

  47. Ghorab, M.K., Adeyeye, M.C.: Enhancement of ibuprofen dissolution via wet granulation with beta cyclodextrin. Pharm. Dev. Technol. 6, 305–314 (2001)

    Article  CAS  Google Scholar 

  48. Sanghavi, N.M., Choudhari, K.B., Matharu, R.S., Viswanathan, L.: Inclusion complexation of Lorazepam with beta-cyclodextrin. Drug Dev. Ind. Pharm. 19, 701–712 (1993)

    Article  CAS  Google Scholar 

  49. Ahn, H.J., Kim, K.M., Choi, S.J., Kim, C.K.: Effects of cyclodextrin derivatives on bioavailability of ketoprofen. Drug Dev. Ind. Pharm. 23, 397–401 (1997)

    Article  CAS  Google Scholar 

  50. Chowdary, K.P.R., Nalluri, B.N.: Nimesulide and beta-cyclodextrin inclusion complexes: physicochemical characterization and dissolution rate studies. Drug Dev. Ind. Pharm. 26, 1217–1220 (2000)

    Article  CAS  Google Scholar 

  51. Pose-Vilarnovo, B., Perdomo-Lopez, I., Echezarreta-Lopez, M., Schroth-Pardo, P., Estrada, E., Torres-Labandeira, J.J.: Improvement of water solubility of sulfamethizole through its complexation with β- and hydroxypropyl-β-cyclodextrin—characterization of the interaction in solution and in solid state. Eur. J. Pharm. Sci. 13, 325–331 (2001)

    Article  CAS  Google Scholar 

  52. Lotter, J., Krieg, H.M., Keizer, K., Breytenbach, J.C.: The influence of beta-cyclodextrin on the solubility of chlorthalidone and its enantiomers. Drug Dev. Ind. Pharm. 25, 879–884 (1999)

    Article  CAS  Google Scholar 

  53. Askrabic, J.M., Rajic, D.S., Tasic, L., Djuric, S., Kasa, P., Hodi, K.P.: Etodolac and solid dispersion with β-cyclodextrin. Drug Dev. Ind. Pharm. 23, 1123–1129 (1997)

    Article  Google Scholar 

  54. Chowdary, K.P.R., Rao, S.S.: Investigation of dissolution of itraconazole by complexation with β-, and hydroxypropyl-β cyclodextrins. Indian J. Pharm. Sci. 63, 438–441 (2001)

    Google Scholar 

  55. Arias, M.J., Moyano, J.R., Munoz, P., Gines, J.M., Justo, A., Giordano, F.: Study of omeprazole-gamma-cyclodextrin complexation in the solid state. Drug Dev. Ind. Pharm. 26, 253–259 (2000)

    Article  CAS  Google Scholar 

  56. Uekama, K., Fujinaga, T., Hirayama, F., Otagiri, M., Yamasaki, M., Seo, H., Hashimoto, T., Tsuruoka, M.: Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. J. Pharm. Sci. 72, 1338–1341 (1983)

    Article  CAS  Google Scholar 

  57. Kang, J., Kumar, V., Yang, D., Chowdhury, P.R., Hohl, R.J.: Cyclodextrin complexation: influence on the solubility, stability, and cytotoxicity of camptothecin, an antineoplastic agent. Eur. J. Pharm. Sci. 15, 163–170 (2002)

    Article  CAS  Google Scholar 

  58. Bettinetti, G., Gazzaniga, A., Mura, P., Giordano, F., Setti, M.: Thermal behavior and dissolution properties of naproxen in combinations with chemically modified beta-cyclodextrins. Drug Dev. Ind. Pharm. 18, 39–53 (1992)

    Article  CAS  Google Scholar 

  59. Nagase, Y., Hirata, M., Wada, K., Arima, H., Hirayama, F., Irie, T., Kikuchi, M., Uekama, K.: Improvement of some pharmaceutical properties of DY-9760e by sulfobutyl ether beta-cyclodextrin. Int. J. Pharm. 229, 163–172 (2001)

    Article  CAS  Google Scholar 

  60. Loftsson, T., Peterson, D.S.: Cyclodextrin solubilization of ETH-615, a zwitterionic drug. Drug Dev. Ind. Pharm. 24, 365–370 (1998)

    Article  CAS  Google Scholar 

  61. McCandless, R., Yalkowsky, S.H.: Effect of hydroxypropyl-betacyclodextrin and pH on the solubility of levemopamil HCl. J. Pharm. Sci. 87, 1639–1642 (1998)

    Article  CAS  Google Scholar 

  62. Castillo, J.A., Canales, J.P., Garcia, J.J., Lastres, J.L., Bolas, F., Torrado, J.J.: Preparation and characterization of albendazole beta-cyclodextrin complexes. Drug Dev. Ind. Pharm. 25, 1241–1248 (1999)

    Article  CAS  Google Scholar 

  63. Arima, H., Yunomae, K., Miyake, K., Irie, T., Hirayama, F., Uekama, K.: Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. J. Pharm. Sci. 90, 690–701 (2001)

    Article  CAS  Google Scholar 

  64. Zhao, L., Li, P., Yalkowsky, S.H.: Solubilization of fluasterone. J. Pharm. Sci. 88, 967–969 (1999)

    Article  CAS  Google Scholar 

  65. Kaukonen, A.M., Lennernas, H., Mannermaa, J.P.: Water-soluble beta cyclodextrin in paediatric oral solutions of spiranolactone: preclinical evalution of spiranolactone bioavailability from solutions of beta cyclodextrin derivatives in rats. J. Pharm. Pharmacol. 50, 611–619 (1998)

    CAS  Google Scholar 

  66. Jain, A.C., Adeyeye, M.C.: Hygroscopicity, phase solubility and dissolution of various substituted sulfobutylether beta-cyclodextrins (SBE) and danazol-SBE inclusion complexes. Int. J. Pharm. 212, 177–186 (2001)

    Article  CAS  Google Scholar 

  67. Londhe, V., Nagarsenker, M.: Comparison between Hydroxypropyl-β-cyclodextrin and polyvinyl pyrrolidine as carriers for carbamazepine solid dispersions. Indian J. Pharm. Sci. 61, 237–240 (1999)

    CAS  Google Scholar 

  68. Loftsson, T., Stefánsson, E.: Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev. Ind. Pharm. 23, 473–481 (1997)

    Article  CAS  Google Scholar 

  69. Van Dorne, H.: Interaction between cyclodextrins and ophthalmic drugs. Eur. J. Pharm. Biopharm. 39, 133–139 (1993)

    Google Scholar 

  70. Uekama, K., Hirayama, F., Arima, H.: Recent aspect of cyclodextrin-based drug delivery system. J. Incl. Phenom. Macrocycl. Chem. 56, 3–8 (2006)

    Article  CAS  Google Scholar 

  71. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)

    Article  CAS  Google Scholar 

  72. Uekama, K.: Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull. 52, 900–915 (2004)

    Article  CAS  Google Scholar 

  73. Miyake, K., Arima, H., Hiramaya, F.: Improvement of solubility and oral bioavailability of rutin by complexation with 2-hydroxypropyl-β-cyclodextrin. Pharm. Dev. Technol. 5, 399–407 (2000)

    Article  CAS  Google Scholar 

  74. Memisoglu, E., Bochot, A., Sen, M., Charon, D., Duchene, D., Hincal, A.A.: Amphiphilic beta-cyclodextrins modified on the primary face: synthesis, characterization, and evaluation of their potential as novel excipients in the preparation of nanocapsules. J. Pharm. Sci. 91, 1214–1224 (2002)

    Article  CAS  Google Scholar 

  75. Okimoto, K., Ohike, A., Ibuki, R., Ohnishi, N., Rajewski, R.A., Stella, V.J., Irie, T., Uekama, K.: Design and evaluation of an osmotic pump tablet (OPT) for chlorpromazine using (SBE)7 m-beta-CD. Pharm. Res. 16, 549–554 (1999)

    Article  CAS  Google Scholar 

  76. Kamada, M., Hirayama, F., Udo, K., Yano, H., Arima, H., Uekama, K.: Cyclodextrin conjugate-based controlled release system: repeated- and prolonged-releases of ketoprofen after oral administration in rats. J. Control. Release 82, 407–416 (2002)

    Article  CAS  Google Scholar 

  77. Hwang, S.J., Bellocq, N.C., Davis, M.E.: Effects of structure of β-cyclodextrin-containing polymers on gene delivery. Bioconjug. Chem. 12, 280–290 (2001)

    Article  CAS  Google Scholar 

  78. Gonzalez, H., Hwang, S.J., Davis, M.E.: New class of polymers for the delivery of macromolecular therapeutics. Bioconj. Chem. 10, 1068 (1999)

    Article  CAS  Google Scholar 

  79. Hwang, S.J., Bellocq, N.C., Davis, M.E.: Effects of Structure of beta-cyclodextrin-containing polymers on gene delivery. Bioconj. Chem. 12(2), 280–290 (2001)

    Article  CAS  Google Scholar 

  80. Pun, S.H., Davis, M.E.: Development of a non-viral gene delivery vehicle for systemic application. Bioconj. Chem. 13, 630 (2002)

    Article  CAS  Google Scholar 

  81. Kihara, F., Arima, H., Tsutsumi, T., Hirayama, F., Uekama, K.: Effects of structure of polyamidoamine dendrimer on gene transfer efficiency of the dendrimer conjugate with alpha-cyclodextrin. Bioconjug. Chem. 13, 1211–1219 (2002)

    Article  CAS  Google Scholar 

  82. Nicolazzi, C., Venard, V., Le Faou, A., Finance, C.: In vitro antiviral activity of the gancyclovir complexed with beta cyclodextrin on human cytomegalovirus strains. Antiviral Res. 54, 121–127 (2002)

    Article  CAS  Google Scholar 

  83. Blanchard, J., Ugwu, S.O., Bhardwaj, R., Dorr, R.T.: Development and testing of an improved of phenytoin using 2-hydroxypropyl-betacyclodextrin. Pharm. Dev. Technol. 5, 333–338 (2000)

    Article  CAS  Google Scholar 

  84. Scalia, S., Villani, S., Casolari, A.: Inclusion complexation of the sunscreening agent 2-ethyl hexyl-p-dimethyl aminobenzoate with hydroxypropyl-β-cyclodextrin: effect on photostability. J. Pharm. Pharmacol. 51, 1367–1374 (1999)

    Article  CAS  Google Scholar 

  85. Loftsson, T., Jarvinen, T.: Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliv. Rev. 36, 59–79 (1999)

    Article  Google Scholar 

  86. Ueda, H., Ou, D., Endo, T., Nagase, H., Tomono, K., Nagai, T.: Evaluation of a sulfobutyl ether beta-cyclodextrin as a solubilizing/stabilizing agent for several drugs. Drug Dev. Ind. Pharm. 24, 863–867 (1998)

    Article  CAS  Google Scholar 

  87. Lutka, A., Koziara, J.: Interaction of trimeprazine with cyclodextrins in aqueous solution. Chem. Pharm. Bull. 57, 369–374 (2000)

    CAS  Google Scholar 

  88. Lutka, A.: Investigation of interaction of promethazine with cyclodextrins in aqueous solution. Acta Pol. Pharm. 59, 45–51 (2002)

    CAS  Google Scholar 

  89. Babu, R., Pandit, J.K.: Effect of aging on the dissolution stability of glibenclamide/beta cyclodextrin complex. Drug Dev. Ind. Pharm. 25, 1215–1219 (1999)

    Article  CAS  Google Scholar 

  90. Cwiertnia, B., Hladon, T., Stobiecki, M.: Stability of diclofenac sodium in the inclusion complex in the beta cyclodextrin in the solid state. J. Pharm. Pharmacol. 51, 1213–1218 (1999)

    Article  CAS  Google Scholar 

  91. Li, J., Guo, Y., Zografi, G.: The solid-state stability of amorphous quinapril in the presence of beta-cyclodextrins. J. Pharm. Sci. 91, 229–243 (2002)

    Article  CAS  Google Scholar 

  92. Croyle, M.A., Cheng, X., Wilson, J.M.: Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther. 8, 1281–1290 (2001)

    Article  CAS  Google Scholar 

  93. Singla, A.K., Garg, A., Aggarwal, D.: Paclitaxel and its formulations. Int. J. Pharm. 235, 179–192 (2002)

    Article  CAS  Google Scholar 

  94. McCormack, B., Geegoriadis, G.: Drugs-in-cyclodextrins-in liposomes: a novel concept in drug delivery. Int. J. Pharm. 112, 249–258 (1994)

    Article  CAS  Google Scholar 

  95. McCormack, B., Gregoriadis, G.J.: Entrapment of cyclodextrin drug complexes into liposomes: potential advantages in drug delivery. Drug Target. 2, 449–454 (1994)

    Article  CAS  Google Scholar 

  96. McCormack, B., Gregoriadis, G.: Comparative studies of the fate of free and liposome-entrapped hydroxypropyl-/3-cyclodextrin/drug complexes after intravenous injection into rats: implications in drug delivery. Biochim. Biophys. Acta 1291, 237–244 (1996)

    CAS  Google Scholar 

  97. McCormack, B., Gregoriadis, G.: Drugs-in-cyclodextrins-in-liposomes: an approach to controlling the fate of water insoluble drugs in vivo. Int. J. Pharm. 162, 59–69 (1998)

    Article  CAS  Google Scholar 

  98. Fatouros, D.G., Hatzidimitriu, K., Antimisiaris, S.G.: Liposomes encapsulating prednisolone–cyclodextrin complexes: comparison of membrane integrity and drug release. Eur. J. Pharm. Sci. 13, 287–296 (2001)

    Article  CAS  Google Scholar 

  99. Skalko, N., Brandl, M., Ladan, M.B., Grid, J.F., Genjak, I.J.: Liposomes with nifedipine and nifedipine–cyclodextrin complex: calorimetrical. Eur. J. Pharm. Sci. 4, 359–366 (1996)

    Article  CAS  Google Scholar 

  100. Skalko-Basnet, N., Pavelic, Z., Becirevic-Lacan, M.: Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug Dev. Ind. Pharm. 26, 1279–1284 (2000)

    Article  CAS  Google Scholar 

  101. Loukas, Y.L., Jayasekera, P., Gregoriadis, G.: Novel liposome-based multicomponent systems for the protection of photolabile agents. Int. J. Pharm. 117, 85–94 (1995)

    Article  CAS  Google Scholar 

  102. Loukas, Y.L., Vraka, V., Gregoriadis, G.: Drugs, in cyclodextrins, in liposomes: a novel approach to the chemical stability of drugs sensitive to hydrolysis. Int. J. Pharm. 162, 137–142 (1998)

    Article  CAS  Google Scholar 

  103. Sukegawa, T., Furuike, T., Niikura, K., Yamagishi, A., Monde, K., Nishimura, S.: Erythrocyte-like liposomes prepared by means of amphiphilic cyclodextrin sulfates. Chem. Commun. 5, 430–431 (2002)

    Article  CAS  Google Scholar 

  104. Loftsson, T., Kristmundsdóttir, T., Ingvarsdóttir, K., Ólafsdóttir, B.J., Baldvinsdóttir, J.: Preparation and physical evaluation of microcapsules of hydrophilic drug–cyclodextrin complexes. J. Microencapsul. 9, 375–382 (1992)

    Article  CAS  Google Scholar 

  105. Filipovic-Grcic, J., Laan, M.B., Skalko, N., Jalsenjak, I.: Chitosan microspheres of nifedipine and nifedipine–cyclodextrin inclusion complexes. Int. J. Pharm. 135, 183–190 (1996)

    Article  CAS  Google Scholar 

  106. Filipovic-Grcic, J., Voinovich, D., Moneghini, M., Becirevic-Lacan, M., Magarotto, L., Jalsenjak, I.: Chitosan microspheres with hydrocortisone and hydrocortisone hydroxypropyl-β-cyclodextrin inclusion complex. Eur. J. Pharm. Sci. 9, 373–379 (2000)

    Article  CAS  Google Scholar 

  107. Quaglia, F., De Rosa, G., Granata, E., Ungaro, F., Fattal, E., La Rotonda, M.I.: Feeding liquid, non-ionic surfactant and cyclodextrin affect the properties of insulin-loaded poly (lactide-co-glycolide) microspheres prepared by spray-drying. J. Control. Release 86, 267–278 (2003)

    Article  CAS  Google Scholar 

  108. Pariot, N., Levy, F.E., Andry, M.C., Levy, M.C.: Cross-linked betacyclodextrin microcapsules.II. Retarding effect on drug release through semi-permeable membranes. Int. J. Pharm. 232, 175–181 (2002)

    Article  CAS  Google Scholar 

  109. Duchênea, D., Ponchel, G., Wouessidjewe, D.: Cyclodextrins in targeting Application to nanoparticles. Adv. Drug Del. Rev. 36, 29–40 (1999)

    Article  Google Scholar 

  110. Memisoglu, E., Bochot, A., Sen, M., Duchene, D., Hıncal, A.A.: Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic β-cyclodextrins. Int. J. Pharm. 251, 143–153 (2003)

    Article  CAS  Google Scholar 

  111. Silveira, M.A., Ponchel, G., Puisieux, F., Duchene, D.: Combined poly (isobutylcyanoacrylate) and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drugs. Pharm. Res. 15, 1051–1055 (1998)

    Article  Google Scholar 

  112. Silveira, A.M.: Formulation et caractérisation de nanoparticules combinées de poly(cyanoacrylate d’isobutyle) et de cyclodextrines destinées à l’admininistration de principes actifs faiblement solubles dans l’eau. Thesis, University of Paris XI (1998)

  113. Boudad, H., Legrand, P., Lebas, G., Cheron, M., Duchene, D., Ponchel, G.: Combined hydroxypropyl-beta-cyclodextrin and poly (alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. Int. J. Pharm. 218, 113–124 (2001)

    Article  CAS  Google Scholar 

  114. Cavalli, R., Peira, E., Caputo, O., Gasco, M.R.: Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with betacyclodextrins. Int. J. Pharm. 182, 59–69 (1999)

    Article  CAS  Google Scholar 

  115. Memisoglu, E., Bochot, A., Ozalp, M., Sen, M., Duchene, D., Hincal, A.A.: Direct formation of nanospheres from amphiphilic beta-cyclodextrin inclusion complexes. Pharm. Res. 20, 117–125 (2003)

    Article  CAS  Google Scholar 

  116. National Institute of Health: NIH Consens Statement Online. Sunlight, Ultraviolet Radiation, and the Skin. http://text.nlm.nih.gov/nih/cdc/www/74txt.html. Accessed 6 Feb. 2000 (1989)

  117. Fenyvesi, É., Otta, K., Kolbe, I., Novák, C., Szejtli, J.: Cyclodextrin complexes of UV filters. J. Incl. Phenom. Macrocycl. Chem. 48, 117–123 (2004)

    Article  CAS  Google Scholar 

  118. Schwack, W., Rudolph, T.: Photochemistry of dibenzoylmethane UV-A filters. J. Photochem. Photobiol. B Biol. 28, 229–234 (1995)

    Article  CAS  Google Scholar 

  119. Scalia, S., Villani, S., Scatturin, A., Vandelli, M.A., Forni, F.: Complexation of the sunscreen agent, butyl-methoxydibenzoylmethane, with hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 175, 205–213 (1998)

    Article  CAS  Google Scholar 

  120. Tarras-Wahlberg, N., Stenhagen, G., Larkö, O., Rosén, A., Wennberg, A.M., Wennerström, O.: Changes in ultraviolet absorption of sunscreens after ultraviolet irradiation. J. Invest. Dermatol. 113, 547–553 (1999)

    Article  CAS  Google Scholar 

  121. Chatelain, E., Gabard, B.: Photostabilization of butyl methoxydibenzoylmethane (Avobenzone) and ethylhexyl methoxycinnamate by bisethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), a new UV broadband filter. Photochem. Photobiol. 74, 401–406 (2001)

    Article  CAS  Google Scholar 

  122. Scalia, S., Molinari, A., Casolari, A., Maldotti, A.: Complexation of the sunscreen agent, phenylbenzimidazole sulphonic acid with cyclodextrins: effect on stability and photo-induced free radical formation. Eur. J. Pharm. Sci. 22, 241–249 (2004)

    Article  CAS  Google Scholar 

  123. Scalia, S., Tursilli, R., Sala, N., Iannuccelli, V.: Encapsulation in lipospheres of the complex between butyl methoxydibenzoylmethane and hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 320, 79–85 (2006)

    Article  CAS  Google Scholar 

  124. Lo Nostro, P., Fratoni, L., Baglioni, P.: Modification of a cellulosic fabric with β-cyclodextrin for textile finishing applications. J. Incl. Phenom. Macrocycl. Chem. 44, 423–427 (2002)

    Article  CAS  Google Scholar 

  125. Martel, B., Morcellet, M., Ruffin, D., Vinet, F., Weltrowski, M.: Capture and controlled release of fragrances by CD finished textiles. J. Incl. Phenom. Macrocycl. Chem. 44, 439–442 (2002)

    Article  CAS  Google Scholar 

  126. Scalia, S., Tursilli, R., Bianchi, A., Lo Nostro, P., Bocci, E., Ridi, F., Baglioni, P.: Incorporation of the sunscreen agent, octyl methoxycinnamate in a cellulosic fabric grafted with β-cyclodextrin. Int. J. Pharm. 308, 155–159 (2006)

    Article  CAS  Google Scholar 

  127. Reuscher, H., Hinsenkorn, R.: Cavasol W7 MCT—new ways in surface modification. J. Incl. Phenom. Mol. Recogn. Chem. 25, 191–196 (1996)

    Article  CAS  Google Scholar 

  128. Liu, Y.Y., Fan, X.D., Hu, H., Tang, Z.H.: Release of chlorambucil from poly(N-isopropylacrylamide) hydrogels with β-cyclodextrin moieties. Macromol. Biosci. 4, 729–736 (2004)

    Article  CAS  Google Scholar 

  129. Liu, Y.Y., Fan, X.D., Kang, T., Sun, L.: A cyclodextrin microgel for controlled release driven by inclusion effects. Macromol. Rapid Commun. 25, 1912–1916 (2004)

    Article  CAS  Google Scholar 

  130. Kanjickal, D., Lopina, S., Evancho-Chapman, M.M., Schmidt, S., Donovan, D.: Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins. J. Biomed. Mater. Res. 74A, 454–460 (2005)

    Article  CAS  Google Scholar 

  131. Liu, Y.Y., Fan, X.D., Zhao, Y.B.: Synthesis and characterization of a poly(N isopropylacrylamide) with β-cyclodextrin as pendant groups. J. Polym. Sci. A Polym. Chem. 43, 3516–3524 (2005)

    Article  CAS  Google Scholar 

  132. Siemoneit, U., Schmitt, C., Alvarez-Lorenzo, C., Luzardo, A., Otero-Espinar, F., Concheiro, A., Blanco-Mendez, J.: Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained release capability. Int. J. Pharm. 312, 66–74 (2006)

    Article  CAS  Google Scholar 

  133. Rodriguez-Tenreiro, C., Alvarez-Lorenzo, C., Rodriguez-Perez, A., Concheiro, A., Torres-Labandeira, J.J.: Estradiol sustained release from high affinity cyclodextrin hydrogels. Eur. J. Pharm. Biopharm. 66, 55–62 (2007)

    Article  CAS  Google Scholar 

  134. Higashi, T., Hirayama, F., Arima, H., Uekama, K.: Polypseudorotaxanes of pegylated insulin with cyclodextrins: application to sustained release system. Bioorg. Med. Chem. Lett. 17(7), 1871–1874 (2007)

    Article  CAS  Google Scholar 

  135. Cavalli, R., Trotta, F., Tumiatti, W.: Cyclodextrin-based nanosponges for drug delivery. J. Incl. Phenom. Macrocycl. Chem. 56, 209–213 (2006)

    Article  CAS  Google Scholar 

  136. Woodley, J.F.: Liposomes for oral administration of drugs. Crit. Rev. Ther. Drug Carrier Syst. 2, 1–18 (1985)

    CAS  Google Scholar 

  137. Mayer, C.: Nanocapsules as drug delivery systems. Int. J. Artif. Organs 28, 1163–1171 (2005)

    CAS  Google Scholar 

  138. Bummer, P.M.: Physical chemical considerations of lipid-based oral drug delivery—solid lipid nanoparticles. Crit. Rev. Ther. Drug Carrier Syst. 21, 1–20 (2004)

    Article  CAS  Google Scholar 

  139. Uner, M.: Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie 61, 375–386 (2006)

    CAS  Google Scholar 

  140. Bochot, A., Trichard, L., Le Bas, G., Alphandary, H., Grossiord, J.L., Duchêne, D., Fattal, E.: α-cyclodextrin/oil beads: an innovative self-assembling system. Int. J. Pharm. 339, 121–129 (2007)

    Article  CAS  Google Scholar 

  141. Trichard, L., Fattal, E., Besnard, M., Bochot, A.: α-cyclodextrin/oil beads as a new carrier for improving the oral bioavailability of lipophilic drugs. J. Control. Release 122, 47–53 (2007)

    Article  CAS  Google Scholar 

  142. Glass, J.E. (ed.): Associative Polymers in Aqueous Solutions. ACS Symp. Am. Chem. Soc, Washington DC (2000)

    Google Scholar 

  143. Landoll, L.M.: Nonionic polymer surfactants. J. Polym. Sci. Polym. Chem. Ed. 20, 443–455 (1982)

    Article  CAS  Google Scholar 

  144. Rouzes, C., Durand, A., Leonard, M., Dellacherie, E.: Surface activity and emulsification properties of hydrophobically modified dextrans. J. Colloid Interface Sci. 253, 217–223 (2002)

    Article  CAS  Google Scholar 

  145. Rotureau, E., Dellacherie, E., Durand, A.: Viscosity of aqueous solutions of polysaccharides and hydrophobically modified polysaccharides: application of Fedors equation. Eur. Polym. J. 42, 1086–1092 (2006)

    Article  CAS  Google Scholar 

  146. Esquenet, C., Bulher, E.: Phase behavior of associating polyelectrolyte polysaccharides. 1. Aggregation process in dilute solution. Macromolecules 34, 5287–5294 (2001)

    Article  CAS  Google Scholar 

  147. Esquenet, C., Terech, P., Boué, F., Buhler, E.: Structural and rheological properties of hydrophobically modified polysaccharide associative networks. Langmuir 20, 3583–3592 (2004)

    Article  CAS  Google Scholar 

  148. Duval-Terrie, C., Huguet, J., Muller, G.: Self-assembly and hydrophobic clusters of amphiphilic polysaccharides. Colloids Surf. A Physicochem. Eng. Asp. 220, 105–115 (2003)

    Article  CAS  Google Scholar 

  149. Henni, W., Deyme, M., Stchakovsky, M., Le Cerf, D., Picton, L., Rosilio, V.: Aggregation of hydrophobically modified polysaccharides in solution and at the air–water interface. J. Colloid Interface Sci. 281, 316–324 (2005)

    Article  CAS  Google Scholar 

  150. Harada, A., Kamachi, M.: Complex formation between poly (ethylene glycol) and α-cyclodextrin. Macromolecules 23, 2821–2823 (1990)

    Article  CAS  Google Scholar 

  151. Harada, A.: Preparation and structures of supramolecules between cyclodextrins and polymers. Coord. Chem. Rev. 148, 115–133 (1996)

    Article  CAS  Google Scholar 

  152. Harada, A.: Construction of supramolecular structures from cyclodextrins, polymers. Carbohydr. Polym. 34, 183–188 (1997)

    Article  CAS  Google Scholar 

  153. Huh, K.M., Ooya, T., Lee, W.K., Sasaki, S., Kwon, I.C., Jeong, S.Y., Yui, N.: Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran and α-cyclodextrin. Macromolecules 34, 8657–8662 (2001)

    Article  CAS  Google Scholar 

  154. Huh, K.M., Cho, Y.W., Chung, H., Kwon, I.C., Jeong, S.Y., Ooya, T., Lee, W.K., Sasaki, S., Yui, N.: Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and α-cyclodextrin. Macromol. Biosci. 4, 92–99 (2004)

    Article  CAS  Google Scholar 

  155. Daoud-Mahammed, S., Couvreur, P., Gref, R.: Novel self-assembling nanogels: stability and lyophilisation studies. Int. J. Pharm. 332, 185–191 (2007)

    Article  CAS  Google Scholar 

  156. Davis, M.E., Bellocq, N.C.: Cyclodextrin-containing polymers for gene delivery. J. Incl. Phenom. Macrocycl. Chem. 44, 17–22 (2002)

    Article  CAS  Google Scholar 

  157. Maestrelli, F., Luísa González-Rodríguez, M., Rabasco, A.M., Mura, P.: Preparation and characterisation of liposomes encapsulating ketoprofen–cyclodextrin complexes for transdermal drug delivery. Int. J. Pharm. 298, 55–67 (2005)

    Article  CAS  Google Scholar 

  158. Lee, E.S., Kwon, M.J., Lee, H., Kim, J.J.: Stabilization of protein encapsulated in poly(lactide-co-glycolide) microspheres by novel viscous S/W/O/W method. Int. J. Pharm. 331, 27–37 (2007)

    Article  CAS  Google Scholar 

  159. Devarakond, B., Hill, R.A., Liebenberg, W., Brits, M., de Villiers, M.M.: Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. Int. J. Pharm. 304, 193–209 (2005)

    Article  CAS  Google Scholar 

  160. Yu, H., Wei, H., Hou, D., Zhang, A.Y., Feng, Z.G.: Composite hydrogels filled with inclusion complexes made from β-cyclodextrins with poly(propylene glycol) bisamine. Curr. Appl. Phys. 7, e116–e119 (2007)

    Google Scholar 

  161. Trapani, A., Laquintana, V., Denora, N., Lopedota, A., Cutrignelli, A., Franco, M., Trapani, G., Liso, G.: Eudragit RS 100 microparticles containing 2-hydroxypropyl-β-cyclodextrin and glutathione: physicochemical characterization, drug release and transport studies. Eur. J. Pharm. Sci. 30, 64–74 (2007)

    Article  CAS  Google Scholar 

  162. Maestrelli, F., Garcia-Fuentes, M., Mura, P., Alonso, M.J.: A new drug nanocarrier consisting of chitosan and hydoxypropylcyclodextrin. Eur. J. Pharm. Biopharm. 63, 79–86 (2006)

    Article  CAS  Google Scholar 

  163. Lemos-Senna, E., Wouessidjewe, D., Lesieur, S., Duchêne, D.: Preparation of amphiphilic cyclodextrin nanospheres using the emulsification solvent evaporation method. Influence of the surfactant on preparation and hydrophobic drug loading. Int. J. Pharm. 170, 119–128 (1998)

    Article  CAS  Google Scholar 

  164. Sajeesh, S., Sharma, C.P.: Cyclodextrin–insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int. J. Pharm. 325, 147–154 (2006)

    Article  CAS  Google Scholar 

  165. Cappello, B., De Rosa, G., Giannini, L., La Rotonda, M.I., Mensitieri, G., Miro, A., Quaglia, F., Russo, R.: Cyclodextrin-containing poly(ethyleneoxide) tablets for the delivery of poorly soluble drugs: potential as buccal delivery system. Int. J. Pharm. 319, 63–70 (2006)

    Article  CAS  Google Scholar 

  166. Ungaro, F., De Rosa, G., Miro, A., Quaglia, F., La Rotonda, M.I.: Cyclodextrins in the production of large porous particles: development of dry powders for the sustained release of insulin to the lungs. Eur. J. Pharm. Sci. 28, 423–432 (2006)

    Article  CAS  Google Scholar 

  167. Rosa, G.D., Larobina, D., La Rotonda, M.I., Musto, P., Quaglia, F., Ungaro, F.: How cyclodextrin incorporation affects the properties of protein-loaded PLGA-based microspheres: the case of insulin/hydroxypropyl-β-cyclodextrin system. J. Control. Release 102, 71–83 (2005)

    Article  CAS  Google Scholar 

  168. Sortino, S., Mazzagliab, A., Scolaroc, L.M., Merlod, F.M., Valverid, V., Sciortinod, M.T.: Nanoparticles of cationic amphiphilic cyclodextrins entangling anionic porphyrins as carrier-sensitizer system in photodynamic cancer therapy. Biomaterials 27, 4256–4265 (2006)

    Article  CAS  Google Scholar 

  169. Gao, H., Yang, Y., Fan, Y., Ma, J.: Conjugates of poly(DL-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(β cyclodextrin) s and their nanoparticles as protein delivery systems. J. Control. Release 112, 301–311 (2006)

    Article  CAS  Google Scholar 

  170. Kang, F., Singh, J.: Conformational stability of a model protein (bovine serum albumin) during primary emulsification process of PLGA microspheres synthesis. Int. J. Pharm. 260, 149–156 (2003)

    Article  CAS  Google Scholar 

  171. Fundueanua, G., Constantinb, M., Dalpiaza, A., Bortolottia, F., Cortesia, R., Ascenzic, P., Menegattia, E.: Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesylate (Foys) in allergic rhinitis treatment. Biomaterials 25, 159–170 (2004)

    Article  CAS  Google Scholar 

  172. Memisoglu-Bilensoya, E., Vurala, T.I., Bochotb, A., Renoirb, J.M., Ducheneb, D., Hvncala, A.A.: Tamoxifen citrate loaded amphiphilic h-cyclodextrin nanoparticles: In vitro characterization and cytotoxicity. J. Control. Release 104, 489–496 (2005)

    Google Scholar 

  173. Francois, M., Snoeckx, E., Putteman, P., Wouters, F., Proost, E.D., Delaet, U., Peeters, J., Brewster, M.E.: A mucoadhesive, cyclodextrin-based vaginal cream formulation of itraconazole. AAPS PharmSci. 5(1), E5 (2003)

  174. Wongmekiat, A., Yoshimatsu, S., Tozuka, Y., Moribe, K., Yamamoto, K.: Investigation of drug nanoparticle formation by co-grinding with cyclodextrins: studies for indomethacin, furosemide and naproxen. J. Incl. Phenom. Macrocycl. Chem. 56, 29–32 (2006)

    Article  CAS  Google Scholar 

  175. Nishimura, K., Hidaka, R., Hirayama, F., Arima, H., Uekama, K.: Improvement of dispersion and release properties of nifedipine in suppositories by complexation with 2-hydroxypropyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 56, 85–88 (2006)

    Article  CAS  Google Scholar 

  176. Skiba, M., Bounoure, F., Barbot, C., Arnaud, P., Skiba, M.: Development of cyclodextrins microspheres for pulmonary drug delivery. J. Pharm. Pharm. Sci. 8(3), 409–418 (2005)

    CAS  Google Scholar 

  177. Evrarda, B., Bertholeta, P., Guedersc, M., Flamentb, M.P., Piela, G., Delattrea, L., Gayotb, A., Letermeb, P., Foidartc, J.M., Cataldo, D.: Cyclodextrins as a potential carrier in drug nebulization. J. Control. Release 96, 403–410 (2004)

    Article  CAS  Google Scholar 

  178. Okimoto, K., Ohike, A., Ibuki, R., Aoki, O., Ohnishi, N., Rajewski, R.A., Stellab, V.J., Irie, T., Uekama, K.: Factors affecting membrane-controlled drug release for an osmotic pump tablet (OPT) utilizing (SBE)-β-CD as both a 7m solubilizer and osmotic agent. J. Control. Release 60, 311–319 (1999)

    Article  CAS  Google Scholar 

  179. Wang, J., Cai, Z.: Incorporation of the antibacterial agent, miconazole nitrate into a cellulosic fabric grafted with β-cyclodextrin. Carbohydr. Polym. (in press). doi:10.1016/j.carbpol.2007.10.019 (2008)

  180. Smith, J.S., MacRaea, R.J., Snowden, M.J.: Effect of SBE7-b-cyclodextrin complexation on carbamazepine release from sustained release beads. Eur. J. Pharm. Biopharm. 60, 73–80 (2005)

    Article  CAS  Google Scholar 

  181. Anadolu, R.Y., Sen, T., Tarimci, N., Birol, A., Erdem, C.: Improved efficacy and tolerability of retinoic acid in acne vulgaris: a new topical formulation with cyclodextrin complex. JEADV 18, 416–421 (2004)

    CAS  Google Scholar 

  182. Herrmann, S., Winter, G., Mohl, S., Siepmann, F., Siepmann, J.: Mechanisms controlling protein release from lipidic implants: effects of PEG addition. J. Control. Release 118, 161–168 (2007)

    Article  CAS  Google Scholar 

  183. Mora, P.C., Cirri, Æ.M., Mura, Æ.P.: Development of a sustained-release matrix tablet formulation of DHEA as ternary complex with α-cyclodextrin and glycine. J. Incl. Phenom. Macrocycl. Chem. 57(1–4), 699–704 (2007)

    Article  CAS  Google Scholar 

  184. Maestrelli, F., Corti, G., Mura, P., Cirri, M., Rangoni, C.: Development of fast-dissolving tablets of flurbiprofen–cyclodextrin complexes. Drug Dev. Ind. Pharm. 31, 697–707 (2005)

    Article  CAS  Google Scholar 

  185. Martin, R., Nchez, I.S., Cao, R., Rieumont, J.: Solubility and kinetic release studies of naproxen and ibuprofen in soluble epichlorohydrin-β-cyclodextrin polymer. Supramol. Chem. 18(8), 627–631 (2006)

    Article  CAS  Google Scholar 

  186. Jug, M., Bećirević-Laćan, M., Kwokal, A., Cetina-Cizmek, B.: Influence of cyclodextrin complexation on piroxicam gel formulations. Acta Pharm. 55, 223–236 (2005)

    Google Scholar 

  187. Babu, R.J., Pandit, J.K.: Effect of cyclodextrins on the complexation and transdermal delivery of bupranolol through rat skin. Int. J. Pharm. 271, 155–165 (2004)

    Article  CAS  Google Scholar 

  188. Dias, M.M.R., Raghavan, S.L., Pellett, M.A., Hadgraft, J.: The effect of β-cyclodextrins on the permeation of diclofenac from supersaturated solutions. Int. J. Pharm. 263, 173–181 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful All India Council of Technical Education New Delhi (8022/RID/NPROJ/RPS-11/2003–04) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber Vyas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyas, A., Saraf, S. & Saraf, S. Cyclodextrin based novel drug delivery systems. J Incl Phenom Macrocycl Chem 62, 23–42 (2008). https://doi.org/10.1007/s10847-008-9456-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-008-9456-y

Keywords

Navigation