Skip to main content
Log in

Metal ion complexes with native cyclodextrins. An overview

  • Review Paper
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The review presents a survey of the metal complexing properties of native cyclodextrins (including deprotonation in alkaline medium) and a report on some recent results on composition and stability of metal–cyclodextrin complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bender, M.L., Komiyama, M.: Cyclodextrin Chemistry. Springer-Verlag, Berlin (1978)

    Google Scholar 

  2. Szejtli, J.: Cyclodextrins and Their Inclusion Complexes. Akademiai Kiado, Budapest (1982)

    Google Scholar 

  3. Szejtli, J.: Cyclodextrin Technology. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  4. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997). doi:10.1021/cr960371r

    Article  CAS  Google Scholar 

  5. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998). doi:10.1021/cr970022c

    Article  CAS  Google Scholar 

  6. Hedges, A.R.: Industrial application of cyclodextrins. Chem. Rev. 98, 2035–2044 (1998). doi:10.1021/cr970014w

    Article  CAS  Google Scholar 

  7. Li, S., Purdy, W.C.: Cyclodextrins and their application in analytical chemistry. Chem. Rev. 92, 1457–1470 (1992). doi:10.1021/cr00014a009

    Article  CAS  Google Scholar 

  8. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998). doi:10.1021/cr970015o

    Article  CAS  Google Scholar 

  9. Russell, N.R., McNamara, M.: Metallo-cyclodextrins. In: Szejtli, J., Szente, L. (eds.) Proceedings of the Eighth International Symposium on Cyclodextrins, pp. 163–170. Kluwer Academic Publishers, Dortrecht (1996)

    Google Scholar 

  10. Hegetschweiler, K.: A rigid, cyclohexane-based polyamino-polyalcohol as a versatile building block for tailored chelating agents. Chem. Soc. Rev. 28, 239–249 (1999). doi:10.1039/a802638f

    Article  CAS  Google Scholar 

  11. Burger, K., Nagy, L.: Metal complexes of carbohydrate and sugar-type ligands. In: Burger, K. (ed.) Biocoordination Chemistry: Coordination Equilibria in Biologically Active Systems, pp. 236–284. E. Hoorwood Chichester, New York (1990)

    Google Scholar 

  12. Verchère, J.-F., Chapelle, S., Xin, F., Crans, D.C.: Metal-carbohydrate complexes in solution. In: Karlin, K.D. (ed.) Progress in Inorganic Chemistry, vol. 47, pp. 837–945. Wiley, New York (1998)

    Chapter  Google Scholar 

  13. Yano, S.: Coordination compounds containing sugars and their derivatives. Coord. Chem. Rev. 92, 113–156 (1988). doi:10.1016/0010-8545(88)85007-0

    Article  CAS  Google Scholar 

  14. Norkus, E., Vaškelis, A., Reklaitis, J.: Formation of copper(II) complexes with glycerol in alkaline medium. Zh. Neorg. Khim. 31, 2318–2321 (1986)

    CAS  Google Scholar 

  15. Norkus, E., Vaškelis, A., Reklaitis, J.: Copper(II) complex formation with saccharose in alkaline solutions. Koord. Khim. 14, 325–327 (1988)

    CAS  Google Scholar 

  16. Norkus, E., Vaškelis, A., Vaitkus, R., Reklaitis, J.: On Cu(II) complex formation with saccharose and glycerol in alkaline solutions. J. Inorg. Biochem. 60, 299–302 (1995). doi:10.1016/0162-0134(95)00089-5

    Article  CAS  Google Scholar 

  17. Norkus, E., Vaičiūnienė, J., Reklaitis, J., Gaidamauskas, E., Crans, D.C.: Speciation of transition metal ion complexes in alkaline solutions of alditols. 1. Cu(II) complex formation with D-mannitol. Chemija 13, 119–128 (2002)

    CAS  Google Scholar 

  18. Norkus, E., Vaičiūnienė, J., Reklaitis, J., Gaidamauskas, E., Crans, D.C.: Speciation of transition metal ion complexes in alkaline solutions of alditols. 2. Cu(II) complex formation with D-sorbitol. Chemija 13, 129–137 (2002)

    CAS  Google Scholar 

  19. Norkus, E., Vaičiūnienė, J., Vuorinen, T., Gaidamauskas, E., Reklaitis, J., Jääskeläinen, A.-S., Crans, D.C.: Cu(II) complex formation with xylitol in alkaline solutions. Carbohydr. Res. 339, 599–605 (2004). doi:10.1016/j.carres.2003.12.003

    Article  CAS  Google Scholar 

  20. VanEtten, R.L., Jennings, H.J., Smith, I.C.P.: The mechanism of the cycloamylose-accelerated cleavage of phenyl ethers. J. Am. Chem. Soc. 89, 3253–3262 (1967). doi:10.1021/ja00989a028

    Article  CAS  Google Scholar 

  21. Gelb, R.I., Schwartz, L.M., Bradshaw, J.J., Laufer, D.A.: Acid dissociation of cyclohexaamylose and cycloheptaamylose. Bioorg. Chem. 9, 299–304 (1980). doi:10.1016/0045-2068(80)90039-5

    Article  CAS  Google Scholar 

  22. Norkus, E., Grincienė, G., Vuorinen, T., Vaitkus, R.: Cu(II) ion complexation by excess of β-cyclodextrin in alkaline solutions. J. Incl. Phenom. Macrocycl. Chem. 48, 147–150 (2004). doi:10.1023/B:JIPH.0000022516.21820.68

    Article  CAS  Google Scholar 

  23. Lygin, E.S., Ivanov, S.Z.: Interaction of saccharose, glucose and fructose with potassium hydroxide at different temperatures. Sakch. Prom. 41, 23–26 (1967)

    CAS  Google Scholar 

  24. Norkus, E., Vaškelis, A., Žakaitė, I., Reklaitis, J.: Polarographic and spectrophotometric investigation of Cu(II) complex formation in alkaline L(+)- and D, L(∓)-tartrate solutions. Chemija 8, 16–25 (1997)

    Google Scholar 

  25. Norkus, E., Vaičiūnienė, J., Vuorinen, T., Heikkilä, M.: Interaction of Cu(II) with dextran in alkaline solutions. Carbohydr. Polym. 50, 159–164 (2002). doi:10.1016/S0144-8617(02)00056-5

    Article  CAS  Google Scholar 

  26. Matsui, Y., Kurita, T., Date, Y.: Complexes of copper(II) with cyclodextrins. Bull. Chem. Soc. Jpn. 45, 3229 (1972). doi:10.1246/bcsj.45.3229

    Article  CAS  Google Scholar 

  27. Matsui, Y., Kurita, T., Yagi, M., Okayama, T., Mochida, K., Date, Y.: Formation and structure of copper(II) complexes with cyclodextrins in alkaline solution. Bull. Chem. Soc. Jpn. 48, 2187–2191 (1975). doi:10.1246/bcsj.48.2187

    Article  CAS  Google Scholar 

  28. Mochida, K., Matsui, Y.: Kinetic study of formation of binuclear complex between copper(II) and cyclodextrin. Chem. Lett. 5, 963–966 (1976). doi:10.1246/cl.1976.963

    Article  Google Scholar 

  29. Matsui, Y., Kinugawa, K.: Spectrophotometric and polarimetric investigations of complex formation between copper(II) and cyclodextrins in alkaline solution. Bull. Chem. Soc. Jpn. 58, 2981–2986 (1985). doi:10.1246/bcsj.58.2981

    Article  CAS  Google Scholar 

  30. Darj, M., Malinowski, E.R.: Determination of the formation constant of the copper chelate of beta-cyclodextrin by spectrophotometric titration with ethylenediaminetetraacetic acid using window factor analysis. Appl. Spectrosc. 56, 257–265 (2002). doi:10.1366/0003702021954520

    Article  CAS  Google Scholar 

  31. Colson, P., Henning, H.J., Smith, I.C.P.: Composition, sequence, and conformation of polymers and oligomers of glucose as revealed by carbon-13 nuclear magnetic resonance. J. Am. Chem. Soc. 96, 8081–8087 (1974). doi:10.1021/ja00833a038

    Article  CAS  Google Scholar 

  32. Gaidamauskas, E., Norkus, E., Butkus, E., Crans, D.C., Grincienė, G.: Deprotonation of β-cyclodextrin in alkaline solutions. Carbohydr. Res. 344, 250–254 (2009). doi:10.1016/j.carres.2008.10.025

    Article  CAS  Google Scholar 

  33. Ribeiro, A.C.F., Lobo, V.M.M., Valente, A.J.M., Simoes, S.N.M., Sobral, A.J.F.N., Ramos, M.L., Burrows, H.D.: Association between ammonium monovanadate and beta-cyclodextrin as seen by NMR and transport techniques. Polyhedron 25, 3581–3587 (2006). doi:10.1016/j.poly.2006.07.006

    Article  CAS  Google Scholar 

  34. Benner, K., Ihringer, J., Klüfers, P., Marinov, D.: Cyclodextrin bucket wheels: an oligosaccharide assembly accommodates Metal(IV) centers. Angew. Chem. Int. Ed. Engl. 45, 5818–5822 (2006). doi:10.1002/anie.200601162

    Article  CAS  Google Scholar 

  35. Li, S.L., Lan, Y.Q., Ma, J.F., Yang, J., Zang, M., Su, Z.M.: Unprecedented dinuclear tin derivative of deprotonated beta-cyclodextrins. Inorg. Chem. 47, 2931–2933 (2008). doi:10.1021/ic8000784

    Article  CAS  Google Scholar 

  36. Geißelmann, A., Klüfers, P., Kropfgans, C., Mayer, P., Piotrowski, H.: Carbohydrate-metal interactions shaped by supramolecular assembling. Angew. Chem. Int. Ed. Engl. 44, 924–927 (2005). doi:10.1002/anie.200460079

    Article  Google Scholar 

  37. Benner, K., Klüfers, P., Schuhmacher, J.: A molecular composite constructed in aqueous alkaline solution from a double six-ring silicate and α-cyclodextrin. Angew. Chem. Int. Ed. Engl. 36, 743–745 (1997). doi:10.1002/anie.199707431

    Article  CAS  Google Scholar 

  38. Nair, B.U., Dismukes, G.C.: Models for the photosynthetic water oxidizing enzyme. 1. A binuclear manganese(III)-β-cyclodextrin complex. J. Am. Chem. Soc. 105, 124–125 (1983). doi:10.1021/ja00339a027

    Article  CAS  Google Scholar 

  39. Russell, N.R., McNamara, M.: FT-IR and Raman spectral evidence for metal complex formation with β-cyclodextrin as a first sphere ligand. J. Incl. Phenom. Mol. Recogn. Chem. 7, 455–460 (1989). doi:10.1007/BF01079781

    Article  CAS  Google Scholar 

  40. Yashiro, M., Miyama, S., Takarada, T., Komiyama, M.: Solubilization of lanthanide ions by cyclodextrins in basic aqueous solutions. J. Incl. Phenom. Mol. Recogn. Chem. 17, 393–397 (1994). doi:10.1007/BF00707134

    Article  CAS  Google Scholar 

  41. Fatin-Rouge, N., Bunzli, J.C.G.: Thermodynamic and structural study of inclusion complexes between trivalent lanthanide ions and native cyclodextrins. Inorg. Chim. Acta 293, 53–60 (1999). doi:10.1016/S0020-1693(99)00227-3

    Article  CAS  Google Scholar 

  42. Yamanari, K., Nakamichi, M., Shimura, Y.: Coordination of cyclodextrin: synthesis and characterization of two diastereomers of (α- and β-cyclodextrinato)bis(ethylenediamine)cobalt(III)(1+) and their related complexes. Inorg. Chem. 28, 248 (1989). doi:10.1021/ic00301a018

    Article  CAS  Google Scholar 

  43. Messmer, E.: Molekülgrössenbestimmung von optisch aktiven Polyoxyverbindungen in ammoniakalischer Kupferlösung (Schweizers Reagens). Z. Phys. Chem. 126, 369–417 (1927)

    CAS  Google Scholar 

  44. McNamara, M., Russell, N.R.: FT and Raman spectra of a series of metallo-β-cyclodextrin complexes. J. Incl. Phenom. Mol. Recogn. Chem. 10, 485–495 (1991). doi:10.1007/BF01061078

    Article  CAS  Google Scholar 

  45. Egyed, O., Weiszfeiler, W.: Structure determination of copper(II)-β-cyclodextrin complex by Fourier transform infrared spectroscopy. Vib. Spectrosc. 7, 73–77 (1994). doi:10.1016/0924-2031(94)85042-9

    Article  CAS  Google Scholar 

  46. Bose, P.K., Polavarapu, P.L.: Evidence for covalent binding between copper ions and cyclodextrin cavity: a vibrational circular dichroism study. Carbohydr. Res. 323, 63–72 (2000). doi:10.1016/S0008-6215(99)00266-9

    Article  CAS  Google Scholar 

  47. Fuchs, R., Habermann, N., Klüfers, P.: Multinuclear sandwich-type complexes of deprotonated β-cyclodextrin and copper(II) ions. Angew. Chem. Int. Ed. Engl. 32, 852–854 (1993). doi:10.1002/anie.199308521

    Article  Google Scholar 

  48. Klüfers, P., Piotrowski, H., Uhlendorf, J.: Homoleptic cuprates(II) with multiply deprotonated α-cyclodextrin ligands. Chem. Eur. J. 3, 601–608 (1997). doi:10.1002/chem.19970030416

    Article  Google Scholar 

  49. Xia, Y., Wan, J.: Preparation and adsorption of novel cellulosic fibers modified by beta-cyclodextrin. Polym. Adv. Technol. 19, 270–275 (2008). doi:10.1002/pat.997

    Article  CAS  Google Scholar 

  50. Norkus, E., Grincienė, G., Vuorinen, T., Butkus, E., Vaitkus, R.: Stability of dinuclear Cu(II)–β-cyclodextrin complex. Supramol. Chem. 15, 425–431 (2003). doi:10.1080/1061027031000124561

    Article  CAS  Google Scholar 

  51. Norkus, E., Vaškelis, A.: Determination of tetrahydroxycuprate and copper(II)-NTA complex stability constants by polarographic and spectrophotometric methods. Polyhedron 13, 3041–3044 (1994). doi:10.1016/S0277-5387(00)83668-2

    Article  CAS  Google Scholar 

  52. Norkus, E.: Diffusion coefficients of Cu(II) complexes with ligands used in alkaline electroless copper plating solutions. J. Appl. Electrochem. 30, 1163–1168 (2000). doi:10.1023/A:1004089915476

    Article  CAS  Google Scholar 

  53. Kurokawa, G., Sekii, M., Ishida, T., Nogami, T.: Crystal structure of a molecular complex from native β-cyclodextrin and copper(II) chloride. Supramol. Chem. 16, 381–384 (2004). doi:10.1080/1061027042000220742

    Article  CAS  Google Scholar 

  54. Ribeiro, A.C.F., Esteso, M.A., Lobo, V.M.M., Valente, A.J.M., Simoes, S.N.M., Sobral, A.J.F.N., Ramos, L., Burrows, H.D., Amado, A.M., da Costa, A.M.: Interactions of copper(II) chloride with β-cyclodextrin in aqueous solutions. J. Carbohydr. Chem. 25, 173–185 (2006). doi:10.1080/07328300600732469

    Article  CAS  Google Scholar 

  55. Premkumar, T., Geckeler, K.E.: A green approach to fabricate CuO nanoparticles. J. Phys. Chem Solids 67, 1451–1456 (2006). doi:10.1016/j.jpcs.2006.01.122

    Article  CAS  Google Scholar 

  56. Klüfers, P., Schuhmacher, J.: Sixteenfold deprotonated γ-cyclodextrin tori as anions in a hexadenuclear lead(II) alkoxide. Angew. Chem. Int. Ed. Engl. 33, 1863–1866 (1994). doi:10.1002/anie.199418631

    Article  Google Scholar 

  57. Norkus, E., Grincienė, G., Vaitkus, R.: Interaction of lead(II) with β-cyclodextrin in alkaline solutions. Carbohydr. Res. 337, 1657–1661 (2002). doi:10.1016/S0008-6215(02)00044-7

    Article  CAS  Google Scholar 

  58. Roa-Morales, G., Galicia, L., Ramirez-Silva, M.T.: Evidence of ternary inclusion complexes formation using factorial design and determination of their formation constant. J. Incl. Phenom. Macrocycl. Chem. 46, 139–145 (2003). doi:10.1023/A:1026319813466

    Article  CAS  Google Scholar 

  59. Roa-Morales, G., Galicia, L., Rojas-Hernandez, A., Ramirez-Silva, M.T.: Electrochemical study on the selective formation of [Pb(cyclodextrin)(2+)] (surface) inclusion complexes at the carbon paste electrode/ClO4 1 M interphase. Electrochim Acta 50, 1925–1930 (2005). doi:10.1016/j.electacta.2004.09.001

    Article  CAS  Google Scholar 

  60. Roa Morales, G., Ramirez Silva, T., Galicia, L.: Carbon paste electrodes electrochemically modified with cyclodextrins. J. Solid State Electrochem. 7, 355–360 (2003)

    CAS  Google Scholar 

  61. Roa, G., Ramirez-Silva, M.T., Romero-Romo, M.A., Galicia, L.: Determination of lead and cadmium using a polycyclodextrin-modified carbon paste electrode with anodic stripping voltammetry. Anal. Bioanal. Chem. 377, 763–769 (2003). doi:10.1007/s00216-003-2126-4

    Article  CAS  Google Scholar 

  62. Ben Ali, M., Kalfat, R., Ben Quada, H., Chovelon, J.M., Jaffrezik-Renault, N.: Cyclodextrin-polymethylhydrosiloxane gel as sensitive membrane for heavy ion sensors. Mater. Sci. Eng. C C6, 53–58 (1998)

    CAS  Google Scholar 

  63. Kalfat, R., Ben Ali, M., Mlika, R., Fekih-Romdhane, F., Jaffrezik-Renault, N.: Polysiloxane-gel matrices for ion sensitive membrane. Int. J. Inorg. Mater 2, 225–231 (2000). doi:10.1016/S1466-6049(00)00010-6

    Article  CAS  Google Scholar 

  64. Ben Ali, M., Kalfat, R., Sfihi, H., Chovelon, J.M., Ben Quada, H., Jaffrezik-Renault, N.: Sensitive cyclodextrin-polysiloxane gel membrane on EIS structure and ISFET for heavy metal ion detection. Sens. Actuators B B6, 233–237 (2000)

    Google Scholar 

  65. Norkus, E., Grincienė, G., Vuorinen, T., Vaitkus, R., Butkus, E.: Interaction of β-cyclodextrin with cadmium(II) ions. Int. J. Biol. Macromol. 33, 251–254 (2003). doi:10.1016/S0141-8130(03)00078-3

    Article  CAS  Google Scholar 

  66. Brusseau, M.L., Wang, X., Wang, W.Z.: Simultaneous elution of heavy metals and organic compounds from soil by cyclodextrin. Environ. Sci. Technol. 31, 1087–1092 (1997). doi:10.1021/es960612c

    Article  CAS  Google Scholar 

  67. Nicolis, I., Coleman, A.W., Charpin, P., De Rango, C.: A molecular composite containing organic and inorganic components—a complex from β-cyclodextrin and hydrated magnesium chloride. Angew. Chem. Int. Ed. Engl. 34, 2381–2383 (1995). doi:10.1002/anie.199523811

    Article  CAS  Google Scholar 

  68. Nicolis, I., Coleman, A.W., Charpin, P., de Rango, C.: First sphere coordination of divalent metal cations by cyclodextrin: structure of the β-cyclodextrin-calcium chloride-water (1/2/11.25) compound. Acta Crystallogr. B B52, 122–130 (1996)

    Article  CAS  Google Scholar 

  69. Nicolis, I., Coleman, A.W., Selkti, M., Villain, F., Charpin, P., de Rango, C.: Molecular composites based on first-sphere coordination of calcium ions by a cyclodextrin. J. Phys. Org. Chem. 14, 35–37 (2001). doi:10.1002/1099-1395(200101)14:1<35::AID-POC309>3.0.CO;2-W

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenijus Norkus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norkus, E. Metal ion complexes with native cyclodextrins. An overview. J Incl Phenom Macrocycl Chem 65, 237–248 (2009). https://doi.org/10.1007/s10847-009-9586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9586-x

Keywords

Navigation