Skip to main content
Log in

HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Three different samples of β cyclodextrin nanosponges (CDNS) are prepared from β cyclodextrin (βCD) and pyromellitic dianhydride (PMA). CDNS are cross-linked, nanoporous materials whose pore size can be modulated by suitable choice of the CD/PMA molar ratio. In the presence of aqueous solutions they can swell giving rise to gel-like behavior. The Raman spectra of dry and water treated CDNS are described, with emphasis on the group vibration modes in the low frequency part of spectrum, sensitive to molecular environment and cross-linking degree, and on O–H/C–H vibration modes of dry/swollen CDNS, in turn providing information on the hydration dynamics. Powder X-ray diffraction data indicate low crystallinity and the presence of bulk water within the 3D polymer network. High resolution magic angle spinning (HR MAS) NMR spectroscopy is successfully used for investigation of swollen CDNS. The NMR signals of bulk and “bound” water indicate two different states of water molecules inside the gel. Probe solute fluorescein is used to spot on the diffusion properties inside the gel. In one case the diffusion coefficient of fluorescein measured in CDNS results one order of magnitude higher than that in D2O. The acceleration effect uncovered indicates that the motion of fluorescein inside the porous gel is driven by both hydrodynamic and electrostatic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, D., Ma, M.: New organic nanoporous polymers and their inclusion complexes. Chem. Mater. 11, 872–874 (1999)

    Article  Google Scholar 

  2. Trotta, F., Tumiatti, W.: Patent WO 03/085002 (2003)

  3. Trotta, F., Tumiatti, W., Cavalli, R., Zerbinati, O., Roggero, C.M., Vallero, R.: Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. Patent number WO 06/002814 (2006)

  4. Trotta, F., Cavalli, R.: Characterization and applications of new hyper-cross-linked cyclodextrins. Compos. Interface. 16, 39–48 (2009)

    Article  CAS  Google Scholar 

  5. Cavalli, R., Trotta, F., Tumiatti, W.: Cyclodextrin-based nanosponges for drug delivery. J. Incl. Phenom. Macrocycl. Chem. 56, 209–213 (2006)

    Article  CAS  Google Scholar 

  6. Trotta, F., Tumiatti, W., Cavalli, R., Roggero, C. M., Mognetti, B., Berta, Nicolao, G.: Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs. Patent WO 09/003656 (2009)

  7. Vyas, A., Shailendra, S., Swarnlata, S.: Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 62, 23–42 (2008)

    Article  CAS  Google Scholar 

  8. Swaminathan, S., Vavia, P.R., Trotta, F., Torne, S.: Formulation of beta-cyclodextrin based nanosponges of itraconazole. J. Incl. Phenom. Macrocycl. Chem. 57, 89–94 (2007)

    Article  CAS  Google Scholar 

  9. Mamba, B.B., Krause, R.W., Malefetse, T.J., Gericke, G., Sithole, S.P.: Cyclodextrin nanosponges in the removal of organic matter to produce water for power generation. Water SA. 34, 657–660 (2008)

    CAS  Google Scholar 

  10. Mamba, B.B., Krause, R.W., Malefetse, T.J., Nxumalo, E.N.: Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water. Environ. Chem. Lett. 5, 79–84 (2007)

    Article  CAS  Google Scholar 

  11. Mhlanga, S.D., Mamba, B.B., Krause, R.W., Malefetse, T.J.: Removal of organic contaminants from water using nanosponge cyclodextrin polyurethanes. J. Chem. Technol. Biot. 82, 382–388 (2007)

    Article  CAS  Google Scholar 

  12. Arkas, M., Allabashi, R., Tsiourvas, D., Mattausch, E.-M., Perfler, R.: Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ. Sci. Technol. 40, 2771–2777 (2006)

    Article  CAS  Google Scholar 

  13. Trotta, F., Tumiatti, W., Vallero, R.: Italian Patent No. MI2004A000614

  14. Huglin, M.B., Liu, Y., Velada, J.L.: Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with acidic comonomers. Polymer 38, 5791–5795 (1997)

    Article  Google Scholar 

  15. Pilla, O., Caponi, S., Fontana, A., Goncalves, J.R., Montagna, M., Rossi, F., Viliani, G., Angelani, L., Ruocco, G., Monaco, G., Sette, F.: The low energy excess of vibrational states in v-SiO2: the role of transverse dynamics. J. Phys. Condense Matter 16, 8519 (2004)

    Article  CAS  Google Scholar 

  16. Fontana, A., Moser, E., Rossi, F., Campostrini, R., Carturan, G.: Structure and dynamics of hydrogenated silica xerogel by raman and brillouin scattering. J. Non-Cryst. Solids 212, 292 (1997)

    Article  CAS  Google Scholar 

  17. Sekine, Y., Ikeda-Fukazawa, T.: Structural changes of water in a hydrogel during dehydration. J. Chem. Phys. 130, 034501 (2009)

    Article  Google Scholar 

  18. Cruciani, O., Mannina, L., Sobolev, A.P., Segre, A., Luisi, P.: Multilamellar liposomes formed from phosphatidyl nucleosides: an NMR-HR MAS characterization. Langmuir 20, 1144–1151 (2004)

    Article  CAS  Google Scholar 

  19. Violette, A., Lancelot, N., Poschalko, A., Piotto, M., Briand, J.-P., Raya, J., Bianco, A., Guichard, G.: Exploring helical folding of oligoureas during chain elongation by high-resolution magic-angle-spinning (HRMAS) NMR spectroscopy. Chem. Eur. J. 14, 3874–3882 (2008)

    Article  CAS  Google Scholar 

  20. Mullen, M.K., Johnstone, K.D., Webb, M., Bampos, N., Sanders, J.K.M., Gunter, M.J.: Monitoring the thermodynamically controlled formation of diimide-based resin-attached rotaxanes by gel-phase HR MAS 1H NMR spectroscopy. Org. Biomol. Chem. 6, 278–286 (2008)

    Article  CAS  Google Scholar 

  21. Schenetti, L., Mucci, A., Parenti, F., Cagnoli, R., Righi, V., Tosi, R.M., Tugnoli, V.: HR-MAS NMR spectroscopy of the human tissues: application to healthy gastric mucosa. Concept Magn. Reson A 28, 430–443 (2006)

    Article  Google Scholar 

  22. Holz, M., Heil, S.R., Sacco, A.: Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys. 2, 4740–4742 (2000)

    Article  CAS  Google Scholar 

  23. Raffaini, G., Ganazzoli, F.: Hydration and flexibility of α-, β-, γ- and δ-cyclodextrin: a molecular dynamics study. Chem. Phys. 333, 128–134 (2007)

    Article  CAS  Google Scholar 

  24. Perale, G., Rossi, F., Santoro, M., Marchetti, P., Mele, A., Castiglione, F., Raffa, E., Masi, M.: Drug release from hydrogels: a new understanding of transport phenomena (in press)

Download references

Acknowledgments

Politecnico di Milano thanks Fondazione Cariplo (project 2007-5378) for financial support. This work was partially supported by the contribution from Provincia Autonoma di Trento (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Mele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mele, A., Castiglione, F., Malpezzi, L. et al. HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges. J Incl Phenom Macrocycl Chem 69, 403–409 (2011). https://doi.org/10.1007/s10847-010-9772-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9772-x

Keywords

Navigation