Skip to main content
Erschienen in: Journal of Logic, Language and Information 4/2015

01.12.2015

How Diagrams Can Support Syllogistic Reasoning: An Experimental Study

verfasst von: Yuri Sato, Koji Mineshima

Erschienen in: Journal of Logic, Language and Information | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper explores the question of what makes diagrammatic representations effective for human logical reasoning, focusing on how Euler diagrams support syllogistic reasoning. It is widely held that diagrammatic representations aid intuitive understanding of logical reasoning. In the psychological literature, however, it is still controversial whether and how Euler diagrams can aid untrained people to successfully conduct logical reasoning such as set-theoretic and syllogistic reasoning. To challenge the negative view, we build on the findings of modern diagrammatic logic and introduce an Euler-style diagrammatic representation system that is designed to avoid problems inherent to a traditional version of Euler diagrams. It is hypothesized that Euler diagrams are effective not only in interpreting sentential premises but also in reasoning about semantic structures implicit in given sentences. To test the hypothesis, we compared Euler diagrams with other types of diagrams having different syntactic or semantic properties. Experiment compared the difference in performance between syllogistic reasoning with Euler diagrams and Venn diagrams. Additional analysis examined the case of a linear variant of Euler diagrams, in which set-relationships are represented by one-dimensional lines. The experimental results provide evidence supporting our hypothesis. It is argued that the efficacy of diagrams in supporting syllogistic reasoning crucially depends on the way they represent the relational information contained in categorical sentences.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Bauer and Johnson-Laird (personal communication) in their unpublished study also reported that while Euler diagrams—or, more specifically, what we will classify as a traditional form of Euler diagrams (Euler circles)—improved reasoning with a class of difficult syllogisms but retarded reasoning with a class of easy syllogisms.
 
2
It is standard in the literature of diagrammatic logic to distinguish between two layers of diagrammatic syntax: concrete (token) syntax and abstract (type) syntax (Howse et al. 2002). The former is concerned with the surface structure of a diagram that is visible to users, while the latter gives a formal definition that concrete diagrams must obey. Since we are concerned with cognitive properties of concrete diagrams presented to users, by (diagrammatic) syntax we mean concrete syntax throughout this paper. This is consistent with Stenning and Lemon’s (2001) cognitive view. They claimed that a concatenation is self-evident in a diagrammatic representation, and thus semantic information can be directly interpreted from a diagrammatic representation without the mediation of abstract syntax.
 
3
Euler invented his diagrams to teach Aristotelian syllogistic logic to a German princess. Indeed, the origin of such diagrams may go back still further. According to Baron’s (1969) historical review, we can find the original idea at least in the thirteenth century scholar Ramon Lull (1617). Furthermore, in Leibniz’s (1903/1988) work in the seventeenth century, there is the description of the use of diagrams to represent syllogisms although it was only much later that his work was published.
 
4
Here, “Euler” diagrams refers to diagrams based on topological relations, such as inclusion and exclusion relations, between circles. Thus, both diagrams in Gergonne’s system and those in our EUL system are instances of Euler diagrams, whereas Venn diagrams are not. In fact, the Euler diagrams currently studied in diagrammatic logic are typically based on the Existence-Free Assumption for minimal regions (EFA) rather than the type used in Gergonne’s system (cf. Stapleton 2005).
 
5
Linear diagrams for categorical syllogisms were introduced by Leibniz (1903/1988) in the seventeenth century (cf. Politzer et al. 2006). In the later eras, the linear diagrams were developed by the work of Lambert (1764). More recently, Englebretsen (1992) provided a logical system of deductive inference with linear diagrams with two-dimensional spaces. Although it is known that Englebretsen’s diagrams are unable to express complex logical inferences and hence have limited expressive power (cf. Lemon and Pratt 1998), linear diagrams are generally expressive enough to represent basic categorical syllogisms.
 
6
The EUL system can derive not only simple syllogisms with two premises but also a chain of syllogisms with more than two premises (the so-called sorites).
 
7
Furthermore, Stenning et al. (1995) reported that diagrams are less effective in the NVC tasks when leaning logic with a computer-assisted system introduced by Barwise and Etchemendy (1994), Hyperproof, using a hybrid interface of logical formulas and diagrams.
 
8
It is noted that this process of checking the invalidity of inferences is similar to the one known as “negation as failure” in the AI literature. One can see that the role of diagrams is to limit the possible search space of drawable conclusions.
 
9
The relevant constraint on unification, called the constraint (3), is the following: for any circles X, Y and Z, if neither inclusion or exclusion relation holds between X and Y in the combined diagram, put X and Y in such a way that X and Y are partially overlapped each other.
 
10
This classification of one/multiple model syllogisms is different from one in the mental model theory. In contrast to this study, for example, Bucciarelli and Johnson-Laird (1999) classified the AI1 syllogism having the premises All B are A and Some C are B to a single model syllogism.
 
11
We used the following translation: “Subete no A wa B de aru” for All A are B, “Dono A mo B de nai” for No A are B, “Aru A wa B de aru” for Some A are B, “Aru A wa B de nai” for Some A are not B. Here we use the quantifiers “subete” and “dono” for all, and “aru” for some. One remarkable difference between English and Japanese is in the translation of No A are B. Since in Japanese there is no negative quantifier corresponding to No, we use the translation “Dono A mo B de nai”, which literally means All A is not B. Except this point, we see no essential differences between English and Japanese. So we will refer to English translation in this paper.
 
12
They were regarded as the participants who gave up halfway and dropped out.
 
13
Here our instruction emphasized that the meaning of categorical sentences used in our experiment does not contain the existential import. Concretely, the following is given: All A are B does not imply that there are some objects which are A; thus, All A are B does not imply Some A are B. Similarly, No A are B does not imply that there are some objects which are A. Thus, No A are B does not imply Some A are not B.
 
14
The accuracy rate for those tasks which have more than one correct answer is described as “X/Y % (Z %)”, where X % represents the accuracy rate for the first correct answer, Y % the second, and Z % the rate for those who selected both correct answers.
 
15
Our result is consistent with those presented in Chapman et al. (2014), where the ease of comprehension of Linear, Euler and Venn diagrams was examined. Sato et al. (2011) also reported a similar result on the information extraction from Euler and Venn diagrams. Their empirical results suggested that the interpretation of Venn diagrams requires more substantial efforts than that of Euler diagrams.
 
16
In our Experiment, the participants in the Venn group were provided with diagrams consisting of two circles that corresponded to the premises of a given syllogism. However, we also tested a situation where participants are initially provided with Venn diagrams consisting of three circles, or “3-Venn diagrams”, namely \(D_3\) and \(D_4\) of Fig. 12. With 3-Venn diagrams, participants could skip the first steps of adding new circles; the only step needed is to superpose the two premise diagrams. Thus, it may be predicted that 3-Venn diagrams are relatively easy to manipulate in syllogism solving, even for novices. In fact, in the experiments of Sato et al. (2010), we obtained results confirming this prediction.
 
17
Further evidence that diagrammatic reasoning has features inherent to System 2 comes from the fact that it can be faster than linguistic or sentential reasoning. Several experiments examined the solution time for reasoning tasks with diagrams and reported that it was short than that for reasoning tasks without diagrams; see Bauer and Johnson-Laird (1993), Cheng (2004), Sato et al. (2015).
 
Literatur
Zurück zum Zitat Alter, A. L., Oppenheimer, D. M., Epley, N., & Eyre, R. N. (2007). Overcoming intuition: Metacognitive difficulty activates analytic reasoning. Journal of Experimental Psychology: General, 136, 569–576.CrossRef Alter, A. L., Oppenheimer, D. M., Epley, N., & Eyre, R. N. (2007). Overcoming intuition: Metacognitive difficulty activates analytic reasoning. Journal of Experimental Psychology: General, 136, 569–576.CrossRef
Zurück zum Zitat Baron, M. E. (1969). A note on the historical development of logic diagrams: Leibniz, Euler and Venn. The Mathematical Gazette, 53, 113–125.CrossRef Baron, M. E. (1969). A note on the historical development of logic diagrams: Leibniz, Euler and Venn. The Mathematical Gazette, 53, 113–125.CrossRef
Zurück zum Zitat Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy, 4, 159–219.CrossRef Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy, 4, 159–219.CrossRef
Zurück zum Zitat Barwise, J., & Etchemendy, J. (1991/1996). Visual information and valid reasoning. In W. Zimmerman & S. Cunningham (Eds.), Visualization in teaching and learning mathematics, MAA Notes, Number 19 (pp. 9–24). Reprinted in G. Allwein & J. Barwise (Eds). (1996). Logical reasoning with diagrams (pp. 3–26). New York: Oxford University Press. Barwise, J., & Etchemendy, J. (1991/1996). Visual information and valid reasoning. In W. Zimmerman & S. Cunningham (Eds.), Visualization in teaching and learning mathematics, MAA Notes, Number 19 (pp. 9–24). Reprinted in G. Allwein & J. Barwise (Eds). (1996). Logical reasoning with diagrams (pp. 3–26). New York: Oxford University Press.
Zurück zum Zitat Barwise, J., & Etchemendy, J. (1994). Hyperproof, CSLI Lecture Notes, No. 42. Stanford, CA: CSLI Publications. Barwise, J., & Etchemendy, J. (1994). Hyperproof, CSLI Lecture Notes, No. 42. Stanford, CA: CSLI Publications.
Zurück zum Zitat Barwise, J., & Hammer, E. (1996). Diagrams and the concept of logical system. In G. Allwein & J. Barwise (Eds.), Logical reasoning with diagrams (pp. 49–78). New York: Oxford University Press. Barwise, J., & Hammer, E. (1996). Diagrams and the concept of logical system. In G. Allwein & J. Barwise (Eds.), Logical reasoning with diagrams (pp. 49–78). New York: Oxford University Press.
Zurück zum Zitat Bauer, M., & Johnson-Laird, P. N. (1993). How diagrams can improve reasoning. Psychological Science, 4, 372–378.CrossRef Bauer, M., & Johnson-Laird, P. N. (1993). How diagrams can improve reasoning. Psychological Science, 4, 372–378.CrossRef
Zurück zum Zitat Benoy, F., & Rodgers, P. (2007). Evaluating the comprehension of Euler diagrams. In E. Banissi, et al. (Eds.), Proceedings of information visualization 2007 (pp. 771–778). Los Alamitos, CA: IEEE Computer Society. Benoy, F., & Rodgers, P. (2007). Evaluating the comprehension of Euler diagrams. In E. Banissi, et al. (Eds.), Proceedings of information visualization 2007 (pp. 771–778). Los Alamitos, CA: IEEE Computer Society.
Zurück zum Zitat Blackburn, P., & Bos, J. (2005). Representation and inference for natural language: A first course in computational semantics. Stanford, CA: CSLI Publications. Blackburn, P., & Bos, J. (2005). Representation and inference for natural language: A first course in computational semantics. Stanford, CA: CSLI Publications.
Zurück zum Zitat Boolos, G. (1984). On ‘syllogistic inference’. Cognition, 17, 181–182.CrossRef Boolos, G. (1984). On ‘syllogistic inference’. Cognition, 17, 181–182.CrossRef
Zurück zum Zitat Bucciarelli, M., & Johnson-Laird, P. N. (1999). Strategies in syllogistic reasoning. Cognitive Science, 23, 247–303.CrossRef Bucciarelli, M., & Johnson-Laird, P. N. (1999). Strategies in syllogistic reasoning. Cognitive Science, 23, 247–303.CrossRef
Zurück zum Zitat Calvillo, D. P., DeLeeuw, K., & Revlin, R. (2006). Deduction with Euler circles: Diagrams that hurt. In D. Baker-Plummer, R. Cox, & N. Swoboda (Eds.), Proceedings of Diagrams 2006, LNAI 4045 (pp. 199–203). Berlin, Heidelberg: Springer. Calvillo, D. P., DeLeeuw, K., & Revlin, R. (2006). Deduction with Euler circles: Diagrams that hurt. In D. Baker-Plummer, R. Cox, & N. Swoboda (Eds.), Proceedings of Diagrams 2006, LNAI 4045 (pp. 199–203). Berlin, Heidelberg: Springer.
Zurück zum Zitat Camp, E. (2007). Thinking with maps. Philosophical Perspectives, 21, 145–182.CrossRef Camp, E. (2007). Thinking with maps. Philosophical Perspectives, 21, 145–182.CrossRef
Zurück zum Zitat Chapman, L., & Chapman, J. (1959). Atmosphere effect re-examined. Journal of Experimental Psychology, 58, 220–226.CrossRef Chapman, L., & Chapman, J. (1959). Atmosphere effect re-examined. Journal of Experimental Psychology, 58, 220–226.CrossRef
Zurück zum Zitat Chapman, P., Stapleton, G., Rodgers, P., Micallef, L., & Blake, A. (2014). Visualizing sets: An empirical comparison of diagram types. In T. Dwyer, H. Purchase, & A. Delaney (Eds.), Proceedings of Diagrams 2014, LNAI 8578 (pp. 146–160). Berlin, Heidelberg: Springer. Chapman, P., Stapleton, G., Rodgers, P., Micallef, L., & Blake, A. (2014). Visualizing sets: An empirical comparison of diagram types. In T. Dwyer, H. Purchase, & A. Delaney (Eds.), Proceedings of Diagrams 2014, LNAI 8578 (pp. 146–160). Berlin, Heidelberg: Springer.
Zurück zum Zitat Cheng, P. C.-H. (2004). Why diagrams are (sometimes) six times easier than words: Benefits beyond locational indexing. In A. F. Blackwell, K. Marriott, & A. Shimojima (Eds.), Proceedings of Diagrams 2004, LNAI 2980 (pp. 242–260). Berlin, Heidelberg: Springer. Cheng, P. C.-H. (2004). Why diagrams are (sometimes) six times easier than words: Benefits beyond locational indexing. In A. F. Blackwell, K. Marriott, & A. Shimojima (Eds.), Proceedings of Diagrams 2004, LNAI 2980 (pp. 242–260). Berlin, Heidelberg: Springer.
Zurück zum Zitat Deloache, J. S., Sugarman, S., & Brown, A. L. (1985). The development of error correction strategies in young children’s manipulative play. Child Development, 56, 928–939.CrossRef Deloache, J. S., Sugarman, S., & Brown, A. L. (1985). The development of error correction strategies in young children’s manipulative play. Child Development, 56, 928–939.CrossRef
Zurück zum Zitat Dickstein, L. S. (1978). The effect of figure on syllogistic reasoning. Memory and Cognition, 6, 76–83.CrossRef Dickstein, L. S. (1978). The effect of figure on syllogistic reasoning. Memory and Cognition, 6, 76–83.CrossRef
Zurück zum Zitat Dickstein, L. S. (1981). The meaning of conversion in syllogistic reasoning. Bulletin of the Psychonomic Society, 18, 135–138.CrossRef Dickstein, L. S. (1981). The meaning of conversion in syllogistic reasoning. Bulletin of the Psychonomic Society, 18, 135–138.CrossRef
Zurück zum Zitat Dobson, M. (1999). Information enforcement and learning with interactive graphical systems. Learning and Instruction, 9, 365–390.CrossRef Dobson, M. (1999). Information enforcement and learning with interactive graphical systems. Learning and Instruction, 9, 365–390.CrossRef
Zurück zum Zitat Doumas, L. A., Hummel, J. E., & Sandhofer, C. M. (2008). A theory of the discovery and predication of relational concepts. Psychological Review, 115, 1–43.CrossRef Doumas, L. A., Hummel, J. E., & Sandhofer, C. M. (2008). A theory of the discovery and predication of relational concepts. Psychological Review, 115, 1–43.CrossRef
Zurück zum Zitat Edwards, A. W. F. (2004). Cogwheels of the mind: The story of venn diagrams. Baltimore, MD: The Johns Hopkins University Press. Edwards, A. W. F. (2004). Cogwheels of the mind: The story of venn diagrams. Baltimore, MD: The Johns Hopkins University Press.
Zurück zum Zitat Englebretsen, G. (1992). Linear diagrams for syllogisms (with relationals). Notre Dame Journal of Formal Logic, 33, 37–69.CrossRef Englebretsen, G. (1992). Linear diagrams for syllogisms (with relationals). Notre Dame Journal of Formal Logic, 33, 37–69.CrossRef
Zurück zum Zitat Erickson, J. R. (1974). A set analysis theory of behavior in formal syllogistic reasoning tasks. In R. Solso (Ed.), Loyola symposium on cognition (Vol. 2, pp. 305–329). Hillsdale, NJ: Erlbaum. Erickson, J. R. (1974). A set analysis theory of behavior in formal syllogistic reasoning tasks. In R. Solso (Ed.), Loyola symposium on cognition (Vol. 2, pp. 305–329). Hillsdale, NJ: Erlbaum.
Zurück zum Zitat Euler, L. (1768). Lettres à une Princesse d’Allemagne sur Divers Sujets de Physique et de Philosophie. Saint-Pétersbourg: De l’Académie des Sciences. Euler, L. (1768). Lettres à une Princesse d’Allemagne sur Divers Sujets de Physique et de Philosophie. Saint-Pétersbourg: De l’Académie des Sciences.
Zurück zum Zitat Evans, J St B T. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive Sciences, 7, 454–459.CrossRef Evans, J St B T. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive Sciences, 7, 454–459.CrossRef
Zurück zum Zitat Evans, J. S. B. T. (2008). Dual processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255–278.CrossRef Evans, J. S. B. T. (2008). Dual processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255–278.CrossRef
Zurück zum Zitat Evans, J. S. B. T., Newstead, S. E., & Byrne, R. J. (1993). Human reasoning: The psychology of deduction. Hove: Erlbaum. Evans, J. S. B. T., Newstead, S. E., & Byrne, R. J. (1993). Human reasoning: The psychology of deduction. Hove: Erlbaum.
Zurück zum Zitat Fish, A., Khazaei, B., & Roast, C. (2011). User-comprehension of Euler diagrams. Journal of Visual Languages and Computing, 22, 340–354.CrossRef Fish, A., Khazaei, B., & Roast, C. (2011). User-comprehension of Euler diagrams. Journal of Visual Languages and Computing, 22, 340–354.CrossRef
Zurück zum Zitat Ford, M. (1994). Two modes of mental representation and problem solution in syllogistic reasoning. Cognition, 54, 1–71.CrossRef Ford, M. (1994). Two modes of mental representation and problem solution in syllogistic reasoning. Cognition, 54, 1–71.CrossRef
Zurück zum Zitat Gattis, M. (2005). Inferencing from spatial information. Spatial Cognition and Computation, 5, 119–137.CrossRef Gattis, M. (2005). Inferencing from spatial information. Spatial Cognition and Computation, 5, 119–137.CrossRef
Zurück zum Zitat Gergonne, J. D. (1817). Essai de dialectique rationelle. Annuales de Mathematiques Pures et Appliqukes, 7, 189–228. Gergonne, J. D. (1817). Essai de dialectique rationelle. Annuales de Mathematiques Pures et Appliqukes, 7, 189–228.
Zurück zum Zitat Geis, M. L., & Zwicky, A. M. (1971). On invited inferences. Linguistic Inquiry, 2, 561–566. Geis, M. L., & Zwicky, A. M. (1971). On invited inferences. Linguistic Inquiry, 2, 561–566.
Zurück zum Zitat Geurts, B. (2003). Reasoning with quantifiers. Cognition, 86, 223–251.CrossRef Geurts, B. (2003). Reasoning with quantifiers. Cognition, 86, 223–251.CrossRef
Zurück zum Zitat Geurts, B. (2007). Existential import. In I. Comorovski & K. von Heusinger (Eds.), Existence: Semantics and syntax (pp. 253–271). Netherlands: Springer. Geurts, B. (2007). Existential import. In I. Comorovski & K. von Heusinger (Eds.), Existence: Semantics and syntax (pp. 253–271). Netherlands: Springer.
Zurück zum Zitat Glasgow, J., Narayanan, N. H., & Chandrasekaran, B. (Eds.). (1995). Diagrammatic reasoning: Cognitive & computational perspectives. Cambridge, MA: AAAI Press/MIT Press. Glasgow, J., Narayanan, N. H., & Chandrasekaran, B. (Eds.). (1995). Diagrammatic reasoning: Cognitive & computational perspectives. Cambridge, MA: AAAI Press/MIT Press.
Zurück zum Zitat Greenfield, P. M., Nelson, K., & Saltzman, E. (1972). The development of rulebound strategies for manipulating seriated cups: A parallel between action and grammar. Cognitive Psychology, 3, 291–310.CrossRef Greenfield, P. M., Nelson, K., & Saltzman, E. (1972). The development of rulebound strategies for manipulating seriated cups: A parallel between action and grammar. Cognitive Psychology, 3, 291–310.CrossRef
Zurück zum Zitat Gurr, C. A., Lee, J., & Stenning, K. (1998). Theories of diagrammatic reasoning: Distinguishing component problems. Minds and Machines, 8, 533–557.CrossRef Gurr, C. A., Lee, J., & Stenning, K. (1998). Theories of diagrammatic reasoning: Distinguishing component problems. Minds and Machines, 8, 533–557.CrossRef
Zurück zum Zitat Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 21, 803–831. Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 21, 803–831.
Zurück zum Zitat Halford, G. S., Wilson, W. H., & Phillips, S. (2010). Relational knowledge: The foundation of higher cognition. Trends in Cognitive Sciences, 14, 497–505.CrossRef Halford, G. S., Wilson, W. H., & Phillips, S. (2010). Relational knowledge: The foundation of higher cognition. Trends in Cognitive Sciences, 14, 497–505.CrossRef
Zurück zum Zitat Hammer, E., & Shin, S. (1998). Euler’s visual logic. History and Philosophy of Logic, 19, 1–29.CrossRef Hammer, E., & Shin, S. (1998). Euler’s visual logic. History and Philosophy of Logic, 19, 1–29.CrossRef
Zurück zum Zitat Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive Sciences, 8, 280–285.CrossRef Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive Sciences, 8, 280–285.CrossRef
Zurück zum Zitat Heiser, J., & Tversky, B. (2006). Arrows in comprehending and producing mechanical diagrams. Cognitive Science, 30, 581–592.CrossRef Heiser, J., & Tversky, B. (2006). Arrows in comprehending and producing mechanical diagrams. Cognitive Science, 30, 581–592.CrossRef
Zurück zum Zitat Hertzum, M., & Frøkjær, E. (1996). Browsing and querying in online documentation: A study of user interfaces and the interaction process. ACM Transactions on Computer–Human Interaction, 3, 136–161.CrossRef Hertzum, M., & Frøkjær, E. (1996). Browsing and querying in online documentation: A study of user interfaces and the interaction process. ACM Transactions on Computer–Human Interaction, 3, 136–161.CrossRef
Zurück zum Zitat Hodes, H. T. (1984). Logicism and the ontological commitments of arithmetic. Journal of Philosophy, 81, 123–49.CrossRef Hodes, H. T. (1984). Logicism and the ontological commitments of arithmetic. Journal of Philosophy, 81, 123–49.CrossRef
Zurück zum Zitat Horn, L. R. (2000). From if to iff: Conditional perfection as pragmatic strengthening. Journal of Pragmatics, 32, 289–326.CrossRef Horn, L. R. (2000). From if to iff: Conditional perfection as pragmatic strengthening. Journal of Pragmatics, 32, 289–326.CrossRef
Zurück zum Zitat Howse, J., Molina, F., Shin, S.-J., & Taylor, J. (2002). On diagram tokens and types. In M. Hegarty, B. Meyer, & N. H. Narayanan (Eds.), Proceedings of Diagrams 2002, LNAI 2317 (pp. 146–160). Berlin, Heidelberg: Springer. Howse, J., Molina, F., Shin, S.-J., & Taylor, J. (2002). On diagram tokens and types. In M. Hegarty, B. Meyer, & N. H. Narayanan (Eds.), Proceedings of Diagrams 2002, LNAI 2317 (pp. 146–160). Berlin, Heidelberg: Springer.
Zurück zum Zitat Howse, J., Stapleton, G., & Taylor, J. (2005). Spider diagrams. LMS Journal of Computation and Mathematics, 8, 145–194.CrossRef Howse, J., Stapleton, G., & Taylor, J. (2005). Spider diagrams. LMS Journal of Computation and Mathematics, 8, 145–194.CrossRef
Zurück zum Zitat Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination, and reason. Chicago, IL: The University of Chicago Press. Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination, and reason. Chicago, IL: The University of Chicago Press.
Zurück zum Zitat Johnson-Laird, P. N. (1983). Mental models: Towards cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press. Johnson-Laird, P. N. (1983). Mental models: Towards cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.
Zurück zum Zitat Johnson-Laird, P. N., & Byrne, R. (1991). Deduction. Hillsdale, NJ: Erlbaum. Johnson-Laird, P. N., & Byrne, R. (1991). Deduction. Hillsdale, NJ: Erlbaum.
Zurück zum Zitat Johnson-Pynn, J., Fragaszy, D. M., Hirsh, E. M., Brakke, K. E., & Greenfield, P. M. (1999). Strategies used to combine seriated cups by chimpanzees (Pan troglodytes), bonobos (Pan paniscus), and capuchins (Cebus apella). Journal of Comparative Psychology, 113, 137–148.CrossRef Johnson-Pynn, J., Fragaszy, D. M., Hirsh, E. M., Brakke, K. E., & Greenfield, P. M. (1999). Strategies used to combine seriated cups by chimpanzees (Pan troglodytes), bonobos (Pan paniscus), and capuchins (Cebus apella). Journal of Comparative Psychology, 113, 137–148.CrossRef
Zurück zum Zitat Jones, S., McInnes, S., & Staveley, M. S. (1999). A graphical user interface for Boolean query specification. International Journal of Digital Library, 2, 207–223.CrossRef Jones, S., McInnes, S., & Staveley, M. S. (1999). A graphical user interface for Boolean query specification. International Journal of Digital Library, 2, 207–223.CrossRef
Zurück zum Zitat Kneale, W., & Kneale, M. (1962). The development of logic. Oxford: Oxford University Press. Kneale, W., & Kneale, M. (1962). The development of logic. Oxford: Oxford University Press.
Zurück zum Zitat Khemlani, S., & Johnson-Laird, P. N. (2012). Theories of the syllogism: A meta-analysis. Psychological Bulletin, 138, 427–457.CrossRef Khemlani, S., & Johnson-Laird, P. N. (2012). Theories of the syllogism: A meta-analysis. Psychological Bulletin, 138, 427–457.CrossRef
Zurück zum Zitat Lambert, J. H. (1764). Neues Organon oder Gedanken über die Erforschung und Bezeichnung des Wahren und dessen Unterscheidung vom Irrtum und Schein. Leipzig: Johann Wendler. Lambert, J. H. (1764). Neues Organon oder Gedanken über die Erforschung und Bezeichnung des Wahren und dessen Unterscheidung vom Irrtum und Schein. Leipzig: Johann Wendler.
Zurück zum Zitat Lakoff, G., & Nún̈ez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic Books. Lakoff, G., & Nún̈ez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic Books.
Zurück zum Zitat Larkin, J., & Simon, H. (1987). Why a diagram is (sometimes) worth 10,000 words. Cognitive Science, 11, 65–99.CrossRef Larkin, J., & Simon, H. (1987). Why a diagram is (sometimes) worth 10,000 words. Cognitive Science, 11, 65–99.CrossRef
Zurück zum Zitat Leibniz, G.W. (1903/1988). Opuscules et fragments inèdits: extraits des manuscrits de la bibliothèque royale de Hanovre. L. Couturat (ed). Hildesheim: Georg Olms Verlag. Leibniz, G.W. (1903/1988). Opuscules et fragments inèdits: extraits des manuscrits de la bibliothèque royale de Hanovre. L. Couturat (ed). Hildesheim: Georg Olms Verlag.
Zurück zum Zitat Lemon, O., & Pratt, I. (1998). On the insufficiency of linear diagrams for syllogisms. Notre Dame Journal of Formal Logic, 39, 573–580.CrossRef Lemon, O., & Pratt, I. (1998). On the insufficiency of linear diagrams for syllogisms. Notre Dame Journal of Formal Logic, 39, 573–580.CrossRef
Zurück zum Zitat Leslie, S. J., & Gelman, S. A. (2012). Quantified statements are recalled as generics: Evidence from preschool children and adults. Cognitive Psychology, 64, 186–214.CrossRef Leslie, S. J., & Gelman, S. A. (2012). Quantified statements are recalled as generics: Evidence from preschool children and adults. Cognitive Psychology, 64, 186–214.CrossRef
Zurück zum Zitat Lull, R. (1617). Opera Ea Quae Ad Adinventam Ab Ipso Artem Universalem, Scientiarum Artiumque Omnium Breui Compendio, Firmaq́; Memoria Apprehendendarum, Locupletiffimaq́; Vel Oratione Ex Tempore Pertractandarum, Pertinent. Strassburg: Lazari Zetzneri. Lull, R. (1617). Opera Ea Quae Ad Adinventam Ab Ipso Artem Universalem, Scientiarum Artiumque Omnium Breui Compendio, Firmaq́; Memoria Apprehendendarum, Locupletiffimaq́; Vel Oratione Ex Tempore Pertractandarum, Pertinent. Strassburg: Lazari Zetzneri.
Zurück zum Zitat MacFarlane, J. (2002). Frege, Kant, and the logic in logicism. The Philosophical Review, 111, 25–65.CrossRef MacFarlane, J. (2002). Frege, Kant, and the logic in logicism. The Philosophical Review, 111, 25–65.CrossRef
Zurück zum Zitat Meilinger, T., & Knauff, M. (2008). Ask for directions or use a map: A field experiment on spatial orientation and wayfinding in an urban environment. Journal of Spatial Science, 53, 13–23.CrossRef Meilinger, T., & Knauff, M. (2008). Ask for directions or use a map: A field experiment on spatial orientation and wayfinding in an urban environment. Journal of Spatial Science, 53, 13–23.CrossRef
Zurück zum Zitat Michard, A. (1982). Graphical presentation of boolean expressions in a database query language: Design notes and an ergonomic evaluation. Behaviour and Information Technology, 1, 279–288.CrossRef Michard, A. (1982). Graphical presentation of boolean expressions in a database query language: Design notes and an ergonomic evaluation. Behaviour and Information Technology, 1, 279–288.CrossRef
Zurück zum Zitat Mineshima, K., Okada, M., Sato, Y., & Takemura, R. (2008). Diagrammatic reasoning system with Euler circles: Theory and experiment design. In G. Stapleton, J. Howse, & J. Lee (Eds.), Proceedings of Diagrams 2008, LNAI 5223 (pp. 188–205). Berlin Heidelberg: Springer. Mineshima, K., Okada, M., Sato, Y., & Takemura, R. (2008). Diagrammatic reasoning system with Euler circles: Theory and experiment design. In G. Stapleton, J. Howse, & J. Lee (Eds.), Proceedings of Diagrams 2008, LNAI 5223 (pp. 188–205). Berlin Heidelberg: Springer.
Zurück zum Zitat Mineshima, K., Okada, M., & Takemura, R. (2012a). A diagrammatic reasoning system with Euler circles. Journal of Logic, Language and Information, 21, 365–391.CrossRef Mineshima, K., Okada, M., & Takemura, R. (2012a). A diagrammatic reasoning system with Euler circles. Journal of Logic, Language and Information, 21, 365–391.CrossRef
Zurück zum Zitat Mineshima, K., Okada, M., & Takemura, R. (2012b). A generalized syllogistic inference system based on inclusion and exclusion relations. Studia Logica, 100, 753–785.CrossRef Mineshima, K., Okada, M., & Takemura, R. (2012b). A generalized syllogistic inference system based on inclusion and exclusion relations. Studia Logica, 100, 753–785.CrossRef
Zurück zum Zitat Mineshima, K., Sato, Y., Takemura, R., & Okada, M. (2014). Towards explaining the cognitive efficacy of Euler diagrams in syllogistic reasoning: A relational perspective. Journal of Visual Languages and Computing, 25, 156–169.CrossRef Mineshima, K., Sato, Y., Takemura, R., & Okada, M. (2014). Towards explaining the cognitive efficacy of Euler diagrams in syllogistic reasoning: A relational perspective. Journal of Visual Languages and Computing, 25, 156–169.CrossRef
Zurück zum Zitat Monaghan, P., & Stenning, K. (1998). Effects of representational modality and thinking style on learning to solve reasoning problems. In M. A. Gernsbacher & S. J. Derry (Eds.), Proceedings of the 20th annual conference of the cognitive science society (pp. 716–721). Mahwah, NJ: Erlbaum. Monaghan, P., & Stenning, K. (1998). Effects of representational modality and thinking style on learning to solve reasoning problems. In M. A. Gernsbacher & S. J. Derry (Eds.), Proceedings of the 20th annual conference of the cognitive science society (pp. 716–721). Mahwah, NJ: Erlbaum.
Zurück zum Zitat Myers, K. L., & Konolige, K. (1994). Reasoning with analogical representations. In G. Lakemeyer & B. Nebel (Eds.), Foundations of knowledge representation and reasoning, LNAI 810 (pp. 229–249). Berlin, Heidelberg: Springer.CrossRef Myers, K. L., & Konolige, K. (1994). Reasoning with analogical representations. In G. Lakemeyer & B. Nebel (Eds.), Foundations of knowledge representation and reasoning, LNAI 810 (pp. 229–249). Berlin, Heidelberg: Springer.CrossRef
Zurück zum Zitat Newstead, S. E., & Griggs, R. (1983). Drawing inferences from quantified statements: A study of the square of opposition. Journal of Verbal Learning and Verbal Behavior, 22, 535–546.CrossRef Newstead, S. E., & Griggs, R. (1983). Drawing inferences from quantified statements: A study of the square of opposition. Journal of Verbal Learning and Verbal Behavior, 22, 535–546.CrossRef
Zurück zum Zitat Palmer, S. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B. Lloyd (Eds.), Cognition and categorization (pp. 259–303). New Jersey: Lawrence Elbaum. Palmer, S. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B. Lloyd (Eds.), Cognition and categorization (pp. 259–303). New Jersey: Lawrence Elbaum.
Zurück zum Zitat Peirce, C.S. (1897/1933). Collected papers of Charles Sanders Peirce IV. In C. Hartshorne & P. Weiss (Eds.), Cambridge, MA: Belknap Press of Harvard University Press. Peirce, C.S. (1897/1933). Collected papers of Charles Sanders Peirce IV. In C. Hartshorne & P. Weiss (Eds.), Cambridge, MA: Belknap Press of Harvard University Press.
Zurück zum Zitat Pfeifer, N., & Kleiter, G. D. (2005). Towards a mental probability logic. Psychologica Belgica, 45, 71–100.CrossRef Pfeifer, N., & Kleiter, G. D. (2005). Towards a mental probability logic. Psychologica Belgica, 45, 71–100.CrossRef
Zurück zum Zitat Politzer, G., van der Henst, J.-B., Luche, C. D., & Noveck, I. A. (2006). The interpretation of classically quantified sentences: A set-theoretic approach. Cognitive Science, 30, 691–723.CrossRef Politzer, G., van der Henst, J.-B., Luche, C. D., & Noveck, I. A. (2006). The interpretation of classically quantified sentences: A set-theoretic approach. Cognitive Science, 30, 691–723.CrossRef
Zurück zum Zitat Politzer, G., & Mercier, H. (2008). Solving categorical syllogisms with singular premises. Thinking and Reasoning, 14, 414–453.CrossRef Politzer, G., & Mercier, H. (2008). Solving categorical syllogisms with singular premises. Thinking and Reasoning, 14, 414–453.CrossRef
Zurück zum Zitat Pratt, I. (1993). Map semantics. In A. U. Frank & I. Campari (Eds.), Spatial information theory: A theoretical basis for GIS, LNCS 716 (pp. 77–91). Berlin, Heidelberg: Springer.CrossRef Pratt, I. (1993). Map semantics. In A. U. Frank & I. Campari (Eds.), Spatial information theory: A theoretical basis for GIS, LNCS 716 (pp. 77–91). Berlin, Heidelberg: Springer.CrossRef
Zurück zum Zitat Purchase, H. C. (2014). Twelve years of diagrams research. Journal of Visual Languages and Computing, 25, 57–75.CrossRef Purchase, H. C. (2014). Twelve years of diagrams research. Journal of Visual Languages and Computing, 25, 57–75.CrossRef
Zurück zum Zitat Rescorla, M. (2009). Predication and cartographic representation. Synthese, 169, 175–200.CrossRef Rescorla, M. (2009). Predication and cartographic representation. Synthese, 169, 175–200.CrossRef
Zurück zum Zitat Revlis, R. (1975). Two models of syllogistic reasoning: Feature selection and conversion. Journal of Verbal Learning and Verbal Behavior, 14, 180–195.CrossRef Revlis, R. (1975). Two models of syllogistic reasoning: Feature selection and conversion. Journal of Verbal Learning and Verbal Behavior, 14, 180–195.CrossRef
Zurück zum Zitat Rizzo, A., & Palmonari, M. (2005). The mediating role of artifacts in deductive reasoning. In B. G. Bara, L. Barsalou & M. Bucciarelli (Eds.), Proceedings of the 27th annual conference of the cognitive science society (pp. 1862–1867). Austin, TX: Cognitive Science Society. Rizzo, A., & Palmonari, M. (2005). The mediating role of artifacts in deductive reasoning. In B. G. Bara, L. Barsalou & M. Bucciarelli (Eds.), Proceedings of the 27th annual conference of the cognitive science society (pp. 1862–1867). Austin, TX: Cognitive Science Society.
Zurück zum Zitat Roberts, M. J., Newstead, S. E., & Griggs, R. A. (2001). Quanntifier interpretation and syllogistic reasoning. Thinking and Reasoning, 7, 173–204.CrossRef Roberts, M. J., Newstead, S. E., & Griggs, R. A. (2001). Quanntifier interpretation and syllogistic reasoning. Thinking and Reasoning, 7, 173–204.CrossRef
Zurück zum Zitat Rodgers, P. (2014). A survey of Euler diagrams. Journal of Visual Languages and Computing, 25, 134–155.CrossRef Rodgers, P. (2014). A survey of Euler diagrams. Journal of Visual Languages and Computing, 25, 134–155.CrossRef
Zurück zum Zitat Sato, Y., Mineshima, K., & Takemura, R. (2010). Constructing internal diagrammatic proofs from external logic diagrams. In R. Catrambone & S. Ohlsson (Eds.), Proceedings of the 32nd annual conference of the cognitive science society (pp. 2668–2673). Austin, TX: Cognitive Science Society. Sato, Y., Mineshima, K., & Takemura, R. (2010). Constructing internal diagrammatic proofs from external logic diagrams. In R. Catrambone & S. Ohlsson (Eds.), Proceedings of the 32nd annual conference of the cognitive science society (pp. 2668–2673). Austin, TX: Cognitive Science Society.
Zurück zum Zitat Sato, Y., Mineshima, K., & Takemura, R. (2011). Interpreting logic diagrams: A comparison of two formulations of diagrammatic representations. In C. Hoelscher, T. F. Shipley & L. Carlson (Eds.), Proceedings of the 33rd annual conference of the cognitive science society (pp. 2182–2187). Austin, TX: Cognitive Science Society. Sato, Y., Mineshima, K., & Takemura, R. (2011). Interpreting logic diagrams: A comparison of two formulations of diagrammatic representations. In C. Hoelscher, T. F. Shipley & L. Carlson (Eds.), Proceedings of the 33rd annual conference of the cognitive science society (pp. 2182–2187). Austin, TX: Cognitive Science Society.
Zurück zum Zitat Sato, Y., Masuda, S., Someya, Y., Tsujii, T., & Watanabe, S. (2015). An fMRI analysis of the efficacy of Euler diagrams in logical reasoning. In Proceedings of 2015 IEEE symposium on visual languages and human-centric computing (9 pp). Los Alamitos, CA: IEEE Computer Society Press. Sato, Y., Masuda, S., Someya, Y., Tsujii, T., & Watanabe, S. (2015). An fMRI analysis of the efficacy of Euler diagrams in logical reasoning. In Proceedings of 2015 IEEE symposium on visual languages and human-centric computing (9 pp). Los Alamitos, CA: IEEE Computer Society Press.
Zurück zum Zitat Scaife, M., & Rogers, Y. (1996). External cognition: How do graphical representations work? International Journal of Human–Computer Studies, 45, 185–213.CrossRef Scaife, M., & Rogers, Y. (1996). External cognition: How do graphical representations work? International Journal of Human–Computer Studies, 45, 185–213.CrossRef
Zurück zum Zitat Shimojima, A. (1996). On the efficacy of representation. PhD thesis, Indiana University. Shimojima, A. (1996). On the efficacy of representation. PhD thesis, Indiana University.
Zurück zum Zitat Shimojima, A., & Katagiri, Y. (2013). An eye-tracking study of exploitations of spatial constraints in diagrammatic reasoning. Cognitive Science, 37, 211–254.CrossRef Shimojima, A., & Katagiri, Y. (2013). An eye-tracking study of exploitations of spatial constraints in diagrammatic reasoning. Cognitive Science, 37, 211–254.CrossRef
Zurück zum Zitat Shin, S.-J. (1994). The logical status of diagrams. New York: Cambridge University Press. Shin, S.-J. (1994). The logical status of diagrams. New York: Cambridge University Press.
Zurück zum Zitat Stapleton, G. (2005). A survey of reasoning systems based on Euler diagrams. Proceedings of Euler diagrams 2004, ENTCS 134 (pp. 127–151). Amsterdam: Elsevier. Stapleton, G. (2005). A survey of reasoning systems based on Euler diagrams. Proceedings of Euler diagrams 2004, ENTCS 134 (pp. 127–151). Amsterdam: Elsevier.
Zurück zum Zitat Stenning, K. (2002). Seeing reason: Image and language in learning to think. Oxford: Oxford University Press.CrossRef Stenning, K. (2002). Seeing reason: Image and language in learning to think. Oxford: Oxford University Press.CrossRef
Zurück zum Zitat Stenning, K., Cox, R., & Oberlander, J. (1995). Contrasting the cognitive effects of graphical and sentential logic teaching: Reasoning, representation and individual differences. Language and Cognitive Processes, 10, 333–354.CrossRef Stenning, K., Cox, R., & Oberlander, J. (1995). Contrasting the cognitive effects of graphical and sentential logic teaching: Reasoning, representation and individual differences. Language and Cognitive Processes, 10, 333–354.CrossRef
Zurück zum Zitat Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic reasoning. Cognitive Science, 19, 97–140.CrossRef Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic reasoning. Cognitive Science, 19, 97–140.CrossRef
Zurück zum Zitat Stenning, K., & Lemon, O. (2001). Aligning logical and psychological perspectives on diagrammatic reasoning. Artificial Intelligence Review, 15, 29–62.CrossRef Stenning, K., & Lemon, O. (2001). Aligning logical and psychological perspectives on diagrammatic reasoning. Artificial Intelligence Review, 15, 29–62.CrossRef
Zurück zum Zitat Stenning, K., & van Lambalgen, M. (2001). Semantics as a foundation for psychology: A case study of Wason’s selection task. Journal of Logic, Language and Information, 10, 273–317.CrossRef Stenning, K., & van Lambalgen, M. (2001). Semantics as a foundation for psychology: A case study of Wason’s selection task. Journal of Logic, Language and Information, 10, 273–317.CrossRef
Zurück zum Zitat Stenning, K., & van Lambalgen, M. (2004). A little logic goes a long way: Basing experiment on semantic theory in the cognitive science of conditional reasoning. Cognitive Science, 28, 481–529.CrossRef Stenning, K., & van Lambalgen, M. (2004). A little logic goes a long way: Basing experiment on semantic theory in the cognitive science of conditional reasoning. Cognitive Science, 28, 481–529.CrossRef
Zurück zum Zitat Stenning, K., & van Lambalgen, M. (2008). Human reasoning and cognitive science. Cambridge, MA: MIT Press. Stenning, K., & van Lambalgen, M. (2008). Human reasoning and cognitive science. Cambridge, MA: MIT Press.
Zurück zum Zitat Sugimoto, Y., & Sato, Y. (2015). A specification-aware modeling of syllogistic reasoning with mental models. In N. A. Taatgen, M. K. van Vugt, J. P. Borst & K. Mehlhorn (Eds.), Proceedings of the 13th international conference on cognitive modeling (pp. 31–36). Groningen, The Netherlands: University of Groningen. Sugimoto, Y., & Sato, Y. (2015). A specification-aware modeling of syllogistic reasoning with mental models. In N. A. Taatgen, M. K. van Vugt, J. P. Borst & K. Mehlhorn (Eds.), Proceedings of the 13th international conference on cognitive modeling (pp. 31–36). Groningen, The Netherlands: University of Groningen.
Zurück zum Zitat Szymanik, J., & Zajenkowski, M. (2010). Comprehension of simple quantifiers: Empirical evaluation of a computational model. Cognitive Science, 34, 521–532.CrossRef Szymanik, J., & Zajenkowski, M. (2010). Comprehension of simple quantifiers: Empirical evaluation of a computational model. Cognitive Science, 34, 521–532.CrossRef
Zurück zum Zitat Takemura, R. (2013). Proof theory for reasoning with Euler diagrams: A logic translation and normalization. Studia Logica, 101, 157–191.CrossRef Takemura, R. (2013). Proof theory for reasoning with Euler diagrams: A logic translation and normalization. Studia Logica, 101, 157–191.CrossRef
Zurück zum Zitat Westerståhl, D. (1989). Quantifiers in formal and natural languages. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 4, pp. 2–132). Dordrecht: Reidel. Westerståhl, D. (1989). Quantifiers in formal and natural languages. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 4, pp. 2–132). Dordrecht: Reidel.
Zurück zum Zitat Zhang, J., & Norman, D. A. (1994). Representations in distributed cognitive tasks. Cognitive Science, 18, 87–122.CrossRef Zhang, J., & Norman, D. A. (1994). Representations in distributed cognitive tasks. Cognitive Science, 18, 87–122.CrossRef
Metadaten
Titel
How Diagrams Can Support Syllogistic Reasoning: An Experimental Study
verfasst von
Yuri Sato
Koji Mineshima
Publikationsdatum
01.12.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Logic, Language and Information / Ausgabe 4/2015
Print ISSN: 0925-8531
Elektronische ISSN: 1572-9583
DOI
https://doi.org/10.1007/s10849-015-9225-4

Weitere Artikel der Ausgabe 4/2015

Journal of Logic, Language and Information 4/2015 Zur Ausgabe