Skip to main content

Advertisement

Log in

Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In medical image analysis and high level computer vision, there is an intensive use of geometric features like orientations, lines, and geometric transformations ranging from simple ones (orientations, lines, rigid body or affine transformations, etc.) to very complex ones like curves, surfaces, or general diffeomorphic transformations. The measurement of such geometric primitives is generally noisy in real applications and we need to use statistics either to reduce the uncertainty (estimation), to compare observations, or to test hypotheses. Unfortunately, even simple geometric primitives often belong to manifolds that are not vector spaces. In previous works [1, 2], we investigated invariance requirements to build some statistical tools on transformation groups and homogeneous manifolds that avoids paradoxes. In this paper, we consider finite dimensional manifolds with a Riemannian metric as the basic structure. Based on this metric, we develop the notions of mean value and covariance matrix of a random element, normal law, Mahalanobis distance and χ2 law. We provide a new proof of the characterization of Riemannian centers of mass and an original gradient descent algorithm to efficiently compute them. The notion of Normal law we propose is based on the maximization of the entropy knowing the mean and covariance of the distribution. The resulting family of pdfs spans the whole range from uniform (on compact manifolds) to the point mass distribution. Moreover, we were able to provide tractable approximations (with their limits) for small variances which show that we can effectively implement and work with these definitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Pennec, “L’incertitude dans les problèmes de reconnaissance et de recalage—Applications en imagerie médicale et biologie moléculaire,” Thèse de sciences (PhD thesis), Ecole Polytechnique, Palaiseau (France), December 1996.

  2. X. Pennec and N. Ayache, “Uniform distribution, distance and expectation problems for geometric features processing,” Journal of Mathematical Imaging and Vision, Vol. 9, No. 1, pp. 49–67, 1998.

  3. X. Pennec, N. Ayache, and J.-P. Thirion, “Landmark-based registration using features identified through differential geometry,” in Handbook of Medical Imaging, I. Bankman (Eds.), Academic Press: Chapt. 31, pp. 499–513, 2000.

  4. X. Pennec, C.R.G. Guttmann, and J.-P. Thirion, “Feature-based registration of medical images: Estimation and validation of the pose accuracy,” in Proc. of First Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI’98), Vol. 1496 of LNCS, October 1998. Springer Verlag: Cambridge, USA, pp. 1107–1114.

  5. S. Granger, X. Pennec, and A. Roche, “Rigid point-surface registration using an EM variant of ICP for computer guided oral implantology,” in 4th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI’01), W.J. Niessen and M.A. Viergever, (Eds.), Utrecht, The Netherlands, 2001, Vol. 2208 of LNCS, pp. 752–761.

  6. S. Granger and X. Pennec, Statistiques exactes et approchées sur les normales aléatoires. Research report RR-4533, INRIA, 2002.

  7. P.T. Fletcher, S. Joshi, C. Lu, and S Pizer, “Gaussian distributions on Lie groups and their application to statistical shape analysis,” in Poc of Information Processing in Medical Imaging (IPMI’2003), 2003, pp. 450–462.

  8. P.T. Fletcher and S.C. Joshi, “Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors,” in Proc. of CVAMIA and MMBIA Workshops, Prague, Czech Republic, May 15, 2004, LNCS 3117, Springer, 2004, pp. 87–98.

  9. Ch. Lenglet, M. Rousson, R. Deriche and O. Faugeras,“Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing”, to appear in International Journal of Mathematical Imaging and Vision, 2006. Also available as INRIA Research Report 5242, 2004.

  10. P. Batchelor, M. Moakher, D. Atkinson, F. Calamante, and A. Connelly, “A rigorous framework for diffusion tensor calculus,” Mag. Res. in Med., Vol. 53, pp. 221–225, 2005.

    Article  Google Scholar 

  11. X. Pennec, P. Fillard, and N. Ayache, “A Riemannian Framework for Tensor Computing”, International Journal of Computer Vision, 66(1):41-66, January 2006. Note: A preliminary version appeared as INRIA Research Report 5255, July 2004.

  12. P. Fillard, V. Arsigny, X. Pennec, P. Thompson, and N. Ayache, “Extrapolation of sparse tensor fields: Application to the modeling of brain variability,” in Proc. of Information Processing in Medical Imaging 2005 (IPMI’05), Gary Christensen and Milan Sonka, (Eds.), Springer: Glenwood springs, Colorado, USA, July 2005, Vol. 3565 of LNCS, pp. 27–38.

  13. X. Pennec and J.-P. Thirion, “A framework for uncertainty and validation of 3D registration methods based on points and frames,” Int. Journal of Computer Vision, Vol. 25, No. 3, pp. 203–229, 1997.

    Article  Google Scholar 

  14. S. Amari, Differential-geometric methods in Statistics, Vol. 28 of Lecture Notes in Statistics, Springer: 2nd corr. print edition, 1990.

  15. J.M. Oller and J.M. Corcuera, “Intrinsic analysis of statistical estimation,” Annals of Statistics, Vol. 23, No. 5, pp. 1562–1581, 1995.

    MATH  MathSciNet  Google Scholar 

  16. C. Bingham, “An antipodally symmetric distribution on the sphere,” The Annals of Statistics, Vol. 2, No. 6, pp. 1201–1225, 1974.

    MATH  MathSciNet  Google Scholar 

  17. P.E. Jupp and K.V. Mardia, “A unified view of the theory of directional statistics, 1975–1988,” Int. Statistical Review, Vol. 57, No. 3, pp. 261–294, 1989.

    Article  MATH  Google Scholar 

  18. J.T. Kent, The art of Statistical Science, chapter 10: New Directions in Shape Analysis, K.V. Mardia, (Ed.), John Wiley & Sons, 1992. pp. 115–127.

  19. K.V. Mardia, “Directional statistics and shape analysis,” Journal of applied Statistics, Vol. 26, pp. 949–957, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  20. D.G. Kendall, “A survey of the statistical theory of shape (with discussion),” Statist. Sci., Vol. 4, pp. 87–120, 1989.

    MATH  MathSciNet  Google Scholar 

  21. I.L. Dryden and K.V. Mardia, “Theoretical and distributional aspects of shape analysis,” in Probability Measures on Groups, X (Oberwolfach, 1990), Plenum: New York, 1991, pp. 95–116.

    Google Scholar 

  22. H. Le and D.G. Kendall, “The Riemannian structure of Euclidean shape space: A novel environment for statistics,” Ann. Statist., Vol. 21, pp. 1225–1271, 1993.

    MATH  MathSciNet  Google Scholar 

  23. C.G. Small, The Statistical Theory of Shapes, Springer Series in Statistics: Springer, 1996.

  24. U. Grenander, Probabilities on Algebraic Structures, Whiley, 1963.

  25. H. Karcher, “Riemannian center of mass and mollifier smoothing,” Comm. Pure Appl. Math., Vol. 30: pp. 509–541, 1977.

    MATH  MathSciNet  Google Scholar 

  26. W.S. Kendall, “Convexity and the hemisphere,” Journ. London Math. Soc., Vol. 43, No. 2, pp. 567–576, 1991.

    MATH  MathSciNet  Google Scholar 

  27. M. Emery and G. Mokobodzki, “Sur le barycentre d’une probabilité dans une variété,” in Séminaire de probabilités XXV, Vol. 1485 of Lect. Notes in Math., M. Yor J. Azema, P.A. Meyer, (Eds.), Springer-Verlag, 1991, pp. 220–233.

  28. M. Arnaudon, “Barycentres convexes et approximations des martingales continues dans les variétés,” In M. Yor J. Azema, P.A. Meyer, editor, Séminaire de probabilités XXIX, Vol. 1613 of Lect. Notes in Math., pp. 70–85. Springer-Verlag, 1995.

  29. J. Picard, “Barycentres et martingales sur une variété,” Annales de l’institut Poincaré—Probabilités et Statistiques, Vol. 30, No. 4, pp. 647-702, 1994.

    MATH  MathSciNet  Google Scholar 

  30. R.W.R. Darling, “Martingales on non-compact manifolds: Maximal inequalities and prescribed limits,” Ann. Inst. H. Poincarré Proba. Statistics., Vol. 32, No. 4, pp. 431–454, 1996.

    MATH  MathSciNet  Google Scholar 

  31. U. Grenander, M.I. Miller, and A. Srivastava, “Hilbert-schmidt lower bounds for estimators on matrix Lie groups for ATR,” IEEE Trans. on PAMI, Vol. 20, No. 8, pp. 790–802, 1998.

    Google Scholar 

  32. X. Pennec, “Computing the mean of geometric features - application to the mean rotation,” Research Report RR-3371, INRIA, March 1998.

  33. C. Gramkow, “On averaging rotations,” Int. Jour. Computer Vision, Vol. 42, No. 1–2, pp. 7–16, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Moakher, “Means and averaging in the group of rotations,” SIAM J. of Matrix Anal. Appl., Vol. 24, No. 1, pp. 1–16, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Edelman, T. Arias, and S.T. Smith, “The geometry of algorithms with orthogonality constraints,” SIAM Journal of Matrix Analysis and Applications, Vol. 20, No. 2, pp. 303–353, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  36. H. Hendricks, “A Cramer-Rao type lower bound for estimators with values in a manifold,” Journal of Multivariate Analysis, Vol. 38, pp. 245–261, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  37. R. Bhattacharya and V. Patrangenaru, “Nonparametric estimation of location and dispersion on Riemannian manifolds,” Journal of Statistical Planning and Inference, Vol. 108, pp. 23–36, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  38. R. Bhattacharya and V. Patrangenaru, “Large sample theory of intrinsic and extrinsic sample means on manifolds I,” Annals of Statistics, Vol. 31, No. 1, pp. 1–29, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  39. M. Spivak, Differential Geometry, Publish or Perish, Inc., 2nd edition, 1979, Vol. 1.

  40. W. Klingenberg, Riemannian Geometry, Walter de Gruyter: Berlin, New York, 1982.

    MATH  Google Scholar 

  41. M. do Carmo, Riemannian Geometry, Mathematics: Birkhäuser, Boston, Basel, Berlin, 1992.

  42. S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, Springer Verlag, 2nd edn., 1993.

  43. H. Poincaré, Calcul des probabilités, 2nd edn., Paris, 1912.

  44. M.G. Kendall and P.A.P. Moran, Geometrical probability, Number 10 in Griffin’s statistical monographs and courses. Charles Griffin & Co. Ltd., 1963.

  45. X. Pennec, “Probabilities and Statistics on Riemannian Manifolds: A Geometric approach,” Research Report 5093, INRIA, January 2004.

  46. M. Fréchet, L’intégrale abstraite d’une fonction abstraite d’une variable abstraite et son application à la moyenne d’un élément aléatoire de nature quelconque. Revue Scientifique, pp. 483–512, 1944.

  47. M. Fréchet, “Les éléments aléatoires de nature quelconque dans un espace distancié,” Ann. Inst. H. Poincaré, Vol. 10, pp. 215–310, 1948.

    Google Scholar 

  48. W.S. Kendall, “Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence,” Proc. London Math. Soc., Vol. 61, No. 2, pp. 371–406, 1990.

  49. S. Doss, “Sur la moyenne d’un élément aléatoire dans un espace distancié,” Bull. Sc. Math. Vol. 73, pp. 48–72, 1949.

    MATH  MathSciNet  Google Scholar 

  50. W. Herer, “Espérance mathématique au sens de Doss d’une variable aléatoire à valeur dans un espace métrique,” C. R. Acad. Sc. Paris, Séris, I, Vol. 302, No. 3, pp. 131–134, 1986.

    MATH  MathSciNet  Google Scholar 

  51. W. Herer, “Espérance mathématique d’une variable aléatoire à valeur dans un espace métrique à courbure négative,” C. R. Acad. Sc. Paris, Série I, Vol. 306, pp. 681–684, 1988.

    MATH  MathSciNet  Google Scholar 

  52. M. Arnaudon, “Espérances conditionnelles et C-martingales dans les variétés,” in Séminaire de probabilités XXVIII, M. Yor J. Azema, P.A. Meyer, (Eds.), Vol. 1583 of Lect. Notes in Math., Springer-Verlag, 1994, pp. 300–311.

  53. H. Maillot, “Différentielle de la variance et centrage de la plaque de coupure sur une variété riemannienne compacte,” Communication personnelle, 1997.

  54. W.S. Kendall, “The propeller: a counterexample to a conjectured criterion for the existence of certain harmonic functions,” Journal of the London Mathematical Society, Vol. 46, pp. 364–374, 1992.

    MATH  MathSciNet  Google Scholar 

  55. E. Hairer, Ch. Lubich, and G. Wanner. “Geometric numerical integration: Structure preserving algorithm for ordinary differential equations,” Vol. 31 of Springer Series in Computational Mathematics, Springer, 2002.

  56. J.-P. Dedieu, G. Malajovich, and P. Priouret, “Newton method on Riemannian manifolds: Covariant alpha-theory,” IMA Journal of Numerical Analysis, Vol. 23, pp. 395–419, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  57. P. Huber, Robust Statistics, John Wiley: New York,1981.

    Book  MATH  Google Scholar 

  58. P.J. Rousseeuw and A.M. Leroy, Robust Regression and Outliers Detection, Wiley series in prob. and math. stat. J. Wiley and Sons, 1987.

  59. M. Emery, Stochastic Calculus in Manifolds, Springer: Berlin, 1989.

    MATH  Google Scholar 

  60. A. Grigor’yan, “Heat kernels on weighted manifolds and applications,” in The Ubiquitous Heat Kernel, J. Jorgenson and L. Walling (Eds.), Vol 398 of Contemporary Mathematics, AMS, 2006, pp. 91–190. http://www.math.uni-bielefeld.de/~grigor/pubs.htm

  61. K.V. Mardia and P.E. Jupp, Directional Statistics, Whiley: Chichester, 2000.

    MATH  Google Scholar 

  62. A.M. Kagan, Y.V. Linnik, and C.R. Rao, Characterization Problems in Mathematical Statistics, Whiley-Interscience: New-York, 1973.

    MATH  Google Scholar 

  63. I. Chavel, Riemannian Geometry—A Modern Introduction, Vol. 108 of Cambridge tracts in mathematics, Cambridge University press, 1993.

  64. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipices in C., Cambridge Univ. Press, 1991.

  65. X. Pennec, “Toward a generic framework for recognition based on uncertain geometric features,” Videre: Journal of Computer Vision Research, Vol. 1, No. 2, pp. 58–87, 1998.

    Google Scholar 

  66. A. Roche, X. Pennec, G. Malandain, and N. Ayache, “Rigid registration of 3D ultrasound with MR images: a new approach combining intensity and gradient information,” IEEE Transactions on Medical Imaging, Vol. 20, No. 10, pp. 1038–1049, 2001.

    Article  Google Scholar 

  67. S. Nicolau, X. Pennec, L. Soler, and N. Ayache, “Evaluation of a new 3D/2D registration criterion for liver radio-frequencies guided by augmented reality,” in International Symposium on Surgery Simulation and Soft Tissue Modeling (IS4TM’03), N. Ayache and H. Delingette, (Eds.), Vol. 2673 of Lecture Notes in Computer Science, Juan-les-Pins, France, INRIA Sophia Antipolis, Springer-Verlag, 2003, pp. 270–283.

  68. V. Rasouli, Application of Riemannian multivariate statistics to the analysis of rock fracture surface roughness, PhD thesis: University of London, 2002.

  69. X. Pennec, “Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements,” in Proc. of Nonlinear Signal and Image Processing (NSIP’99), A.E. Cetin, L. Akarun, A. Ertuzun, M.N. Gurcan, and Y. Yardimci, (Eds.), June 20-23, Antalya, Turkey, IEEE-EURASIP, 1999, Vol. 1, pp. 194–198,

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Pennec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennec, X. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. J Math Imaging Vis 25, 127–154 (2006). https://doi.org/10.1007/s10851-006-6228-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-006-6228-4

Keywords

Navigation