Skip to main content
Log in

Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Interacting and annealing are two powerful strategies that are applied in different areas of stochastic modelling and data analysis. Interacting particle systems approximate a distribution of interest by a finite number of particles where the particles interact between the time steps. In computer vision, they are commonly known as particle filters. Simulated annealing, on the other hand, is a global optimization method derived from statistical mechanics. A recent heuristic approach to fuse these two techniques for motion capturing has become known as annealed particle filter. In order to analyze these techniques, we rigorously derive in this paper two algorithms with annealing properties based on the mathematical theory of interacting particle systems. Convergence results and sufficient parameter restrictions enable us to point out limitations of the annealed particle filter. Moreover, we evaluate the impact of the parameters on the performance in various experiments, including the tracking of articulated bodies from noisy measurements. Our results provide a general guidance on suitable parameter choices for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alspach, D., Sorenson, H.: Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Autom. Control 17(4), 439–448 (1972)

    Article  MATH  Google Scholar 

  2. Chigansky, P., Liptser, R.: Stability of nonlinear filters in nonmixing case. Ann. Appl. Probab. 14(4), 2038–2056 (2004)

    Article  MATH  Google Scholar 

  3. Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process. 50(3), 736–746 (2002)

    Article  Google Scholar 

  4. Crisan, D., Grunwald, M.: Large deviation comparison of branching algorithms versus resampling algorithms: application to discrete time stochastic filtering. Technical report, Statistical Laboratory, Cambridge University, UK, 1999

  5. Crisan, D., Del Moral, P., Lyons, T.: Discrete filtering using branching and interacting particle systems. Markov Process. Relat. Fields 5(3), 293–319 (1999)

    MATH  Google Scholar 

  6. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: Proc. Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 1144–1149 (2000)

  7. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. Int. J. Comput. Vis. 61(2), 185–205 (2005)

    Article  Google Scholar 

  8. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    MATH  Google Scholar 

  9. Gall, J., Rosenhahn, B., Brox, T., Seidel, H.-P.: Learning for multi-view 3d tracking in the context of particle filters. In: Int. Symposium on Visual Computing (ISVC). Lecture Notes in Computer Science, vol. 4292, pp. 59–69. Springer, Berlin (2006)

    Google Scholar 

  10. Gidas, B.: Metropolis-type Monte Carlo simulation algorithms and simulated annealing. In: Topics in Contemporary Probability and Its Applications, pp. 159–232. CRC Press, Boca Raton (1995)

    Google Scholar 

  11. Le Gland, F., Oudjane, N.: Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters. Ann. Appl. Probab. 14(1), 144–187 (2004)

    Article  MATH  Google Scholar 

  12. Gordon, N., Salmond, D., Smith, A.: Novel approach to non-linear/non-Gaussian bayesian state estimation. IEE Proc. F 140(2), 107–113 (1993)

    Google Scholar 

  13. Hammersley, J., Handscomb, D.: Monte Carlo Methods. Methuen, London (1967)

    Google Scholar 

  14. Hastings, W.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MATH  Google Scholar 

  15. Isard, M., Blake, A.: Contour tracking by stochastic propagation of conditional density. In: Proc. European Conf. on Computer Vision, vol. 1, pp. 343–356 (1996)

  16. Jazwinski, A.: Stochastic Processes and Filtering Theory. Academic Press, London (1970)

    MATH  Google Scholar 

  17. Julier, S., Uhlmann, J.: A new extension of the Kalman filter to nonlinear systems. In: Int. Symposium on Aerospace/Defence Sensing, Simulation and Controls (1997)

  18. Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)

    Google Scholar 

  19. Kanazawa, K., Koller, D., Russell, S.: Stochastic simulation algorithms for dynamic probabilistic networks. In: Proc. of the Eleventh Annual Conf. on Uncertainty in AI (UAI), pp. 346–351 (1995)

  20. Kirkpatrick, S., Gelatt, C. Jr., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  Google Scholar 

  21. Kitagawa, G., Gersch, W.: Smoothness Priors Analysis of Time Series. Lecture Notes in Statistics, vol. 116. Springer, New York (1996)

    MATH  Google Scholar 

  22. MacCormick, J.: Probabilistic models and stochastic algorithms for visual tracking. PhD thesis, University of Oxford (2000)

  23. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  24. Del Moral, P.: Nonlinear filtering: Interacting particle solution. Markov Process. Relat. Fields 2(4), 555–580 (1996)

    MATH  Google Scholar 

  25. Del Moral, P.: Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems. Ann. Appl. Probab. 8(2), 438–495 (1998)

    Article  MATH  Google Scholar 

  26. Del Moral, P.: Feynman–Kac Formulae. Genealogical and Interacting Particle Systems with Applications. Springer, New York (2004)

    MATH  Google Scholar 

  27. Del Moral, P., Doucet, A.: On a class of genealogical and interacting metropolis models. In: Séminaire de Probabilités XXXVII. Lecture Notes in Mathematics, vol. 1832. Springer, New York (2003)

    Google Scholar 

  28. Del Moral, P., Guionnet, A.: On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. Henri Poincaré, B Probab. Stat. 37(2), 155–194 (2001)

    Article  MATH  Google Scholar 

  29. Del Moral, P., Miclo, L.: Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to nonlinear filtering. In: Séminaire de Probabilités XXXIV. Lecture Notes in Mathematics, vol. 1729, pp. 1–145. Springer, New York (2000)

    Chapter  Google Scholar 

  30. Del Moral, P., Miclo, L.: Annealed Feynman–Kac models. Commun. Math. Phys. 235, 191–214 (2003)

    Article  MATH  Google Scholar 

  31. Neal, R.: Annealed importance sampling. Stat. Comput. 11, 125–139 (2001)

    Article  Google Scholar 

  32. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2002)

    Google Scholar 

  33. Rogers, L., Williams, D.: Diffusions, Markov Processes and Martingales, vol. 1, 2nd edn. Cambridge University Press, Cambridge (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Gall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gall, J., Potthoff, J., Schnörr, C. et al. Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications. J Math Imaging Vis 28, 1–18 (2007). https://doi.org/10.1007/s10851-007-0007-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0007-8

Keywords

Navigation