Skip to main content
Log in

Fast Image Inpainting Based on Coherence Transport

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

High-quality image inpainting methods based on nonlinear higher-order partial differential equations have been developed in the last few years. These methods are iterative by nature, with a time variable serving as iteration parameter. For reasons of stability a large number of iterations can be needed which results in a computational complexity that is often too large for interactive image manipulation.

Based on a detailed analysis of stationary first order transport equations the current paper develops a fast noniterative method for image inpainting. It traverses the inpainting domain by the fast marching method just once while transporting, along the way, image values in a coherence direction robustly estimated by means of the structure tensor. Depending on a measure of coherence strength the method switches continuously between diffusion and directional transport. It satisfies a comparison principle. Experiments with the inpainting of gray tone and color images show that the novel algorithm meets the high level of quality of the methods of Bertalmio et al. (SIG-GRAPH ’00: Proc. 27th Conf. on Computer Graphics and Interactive Techniques, New Orleans, ACM Press/Addison-Wesley, New York, pp. 417–424, 2000), Masnou (IEEE Trans. Image Process. 11(2):68–76, 2002), and Tschumperlé (Int. J. Comput. Vis. 68(1):65–82, 2006), while being faster by at least an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Springer, New York (2002)

    MATH  Google Scholar 

  2. Bertalmio, M., Bertozzi, A.L., Sapiro, G.: Navier-Stokes, fluid dynamics, and image and video inpainting. In: CVPR’01: Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, Kauai, vol. I, pp. 355–362. IEEE Press, New York (2001)

    Google Scholar 

  3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIGGRAPH ’00: Proc. 27th Conf. on Computer Graphics and Interactive Techniques, New Orleans, pp. 417–424. ACM Press/Addison-Wesley, New York (2000)

    Chapter  Google Scholar 

  4. Caselles, V., Masnou, S., Morel, J.-M., Sbert, C.: Image interpolation. In: Séminaire sur les Équations aux Dérivées Partielles, École Polytech., Palaiseau, 1997–1998. Exp. No. XII, p. 15 (1998), downloadable at the url citeseer.ist.psu.edu/caselles98image.html

  5. Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chan, T.F., Shen, J.: Inpainting based on nonlinear transport and diffusion. In: Inverse problems, image analysis, and medical imaging, New Orleans, LA, 2001. Contemporary Mathematics, vol. 313, pp. 53–65. AMS, Providence (2002)

    Google Scholar 

  7. Chan, T.F., Shen, J.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, T.F., Shen, J.: Image Processing and Analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2005)

    MATH  Google Scholar 

  9. Chan, T.F., Shen, J.: Variational image inpainting. Commun. Pure Appl. Math. 58(5), 579–619 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  11. Esedoglu, S., Shen, J.: Digital inpainting based on the Mumford-Shah-Euler image model. Eur. J. Appl. Math. 13(4), 353–370 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fuchs, F.G.: Eulers Elastica- und krümmungsbasiertes Inpainting. Master’s thesis, Technische Universität München (2006)

  13. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using Matlab. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  14. Guichard, F., Morel, J.-M.: Image Analysis and PDEs. Unpublished book. Manuscript version 15/07/2000, 345 pp. (2000), downloadable at the url: citeseer.ist.psu.edu/guichard01image.html

  15. Kimmel, R.: Numerical Geometry of Images. Springer, New York (2004)

    MATH  Google Scholar 

  16. Masnou, S.: Disocclusion: a variational approach using level lines. IEEE Trans. Image Process. 11(2), 68–76 (2002)

    Article  MathSciNet  Google Scholar 

  17. Masnou, S., Morel, J.-M.: Level lines based disocclusion. In: ICIP’98: Proc. IEEE Int. Conf. on Image Processing, Chicago, pp. 259–263. IEEE Press, New York (1998)

    Google Scholar 

  18. Oliveira, M.M., Bowen, B., McKenna, R., Chang, Y.-S.: Fast digital image inpainting. In: VIIP ’01: Proc. Int. Conf. on Visualization, Imaging, and Image Processing, Marbella, Spain, pp. 261–266 (2001)

  19. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  20. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. U.S.A. 93(4), 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Soille, P.: Spatial distributions from contour lines: an efficient methodology based on distance transforms. J. Vis. Commun. Image Rep. 2(2), 138–150 (1991)

    Article  Google Scholar 

  23. Soille, P.: Morphological Image Analysis. 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  24. Telea, A.: An image inpainting technique based on the fast marching method. J. Graph. Tools 9(1), 23–34 (2004)

    Google Scholar 

  25. Tschumperlé, D.: Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE’s. Int. J. Comput. Vis. 68(1), 65–82 (2006)

    Article  Google Scholar 

  26. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  28. Weickert, J.: Coherence-enhancing diffusion of color images. Image Vis. Comput. 17(3–4), 201–212 (1999)

    Article  Google Scholar 

  29. Weickert, J.: Coherence-enhancing shock filters. In: Michaelis, B., Krell, G. (eds.) Pattern Recognition. Lecture Notes in Computer Science, vol. 2781. Springer, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folkmar Bornemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornemann, F., März, T. Fast Image Inpainting Based on Coherence Transport. J Math Imaging Vis 28, 259–278 (2007). https://doi.org/10.1007/s10851-007-0017-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0017-6

Keywords

Navigation