Skip to main content
Log in

Properties of Higher Order Nonlinear Diffusion Filtering

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper provides a mathematical analysis of higher order variational methods and nonlinear diffusion filtering for image denoising. Besides the average grey value, it is shown that higher order diffusion filters preserve higher moments of the initial data. While a maximum-minimum principle in general does not hold for higher order filters, we derive stability in the 2-norm in the continuous and discrete setting. Considering the filters in terms of forward and backward diffusion, one can explain how not only the preservation, but also the enhancement of certain features in the given data is possible. Numerical results show the improved denoising capabilities of higher order filtering compared to the classical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10, 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Diff. Integral Equ. 14(3), 321–360 (2001)

    MATH  Google Scholar 

  3. Bertero, M., Poggio, T.A., Torre, V.: Ill-posed problems in early vision. Proc. IEEE 76, 869–889 (1988)

    Article  Google Scholar 

  4. Carmona, R.A., Zhong, S.: Adaptive smoothing respecting feature directions. IEEE Trans. Image Process. 7(3), 353–358 (1998)

    Article  Google Scholar 

  5. Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. Proc. IEEE International Conference on Image Processing (ICIP-94, Austin, Nov. 13–16, 1994), vol. 2, pp. 168–172 (1994)

  8. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6(2), 298–311 (1997)

    Article  Google Scholar 

  9. Davies, P.L., Kovac, A.: Local extremes, runs, strings and multiresolution. Ann. Stat. 29, 1–65 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Didas, S.: Higher order variational methods for noise removal in signals and images. Diploma thesis, Department of Mathematics, Saarland University, Saarbrücken, Germany, April 2004. http://www.mia.uni-saarland.de/didas/pub/diplom.pdf

  11. Didas, S.: Denoising and enhancement of digital images—variational methods, integrodifferential equations, and wavelets. Ph.D. thesis, Saarland University (2008). http://www.itwm.de/bv/employees/didas/dissertation.pdf

  12. Didas, S., Burgeth, B., Imiya, A., Weickert, J.: Regularity and scale-space properties of fractional high order linear filtering. In: Kimmel, R., Sochen, N., Weickert, J. (eds.) Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 13–25. Springer, Berlin (2005)

    Google Scholar 

  13. Didas, S., Steidl, G., Weickert, J.: Discrete multiscale wavelet shrinkage and integrodifferential equations. In: Schelkens, P., Ebrahimi, T., Cristóbal, G., Truchetet, F. (eds.) Optical and Digital Image Processing—Photonics Europe. Proceedings of SPIE, vol. 7000, pp. 70000S–1–70000S–12. SPIE, Bellingham (2008)

    Google Scholar 

  14. Didas, S., Weickert, J., Burgeth, B.: Stability and local feature enhancement of higher order nonlinear diffusion filtering. In: Kropatsch, W., Sablatnig, R., Hanbury, A. (eds.) Pattern Recognition. Lecture Notes in Computer Science, vol. 3663, pp. 451–458. Springer, Berlin (2005)

    Chapter  Google Scholar 

  15. Feng, X., Prohl, A.: Analysis of total variation flow and its finite element approximations. ESAIM: Math. Model. Numer. Anal. 37(3), 533–556 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Englewood Cliffs, Prentice-Hall (1963). Revised english edition

    Google Scholar 

  17. Gerig, G., Kübler, O., Kikinis, R., Jolesz, F.A.: Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imag. 11, 221–232 (1992)

    Article  Google Scholar 

  18. Giaquinta, M., Hildebrandt, S.: Calculus of Variations I—The Lagrangian Formalism. Springer, Berlin (1996)

    Google Scholar 

  19. Green, P.J.: Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imag. 9(1), 84–93 (1990)

    Article  Google Scholar 

  20. Greer, J.B., Bertozzi, A.L.: H 1 solutions of a class of fourth order nonlinear equations for image processing. Discrete Contin. Dyn. Syst. 10(1 and 2), 349–368 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics. Probability and Mathematical Statistics. Wiley, New York (1986)

    MATH  Google Scholar 

  22. Hinterberger, W., Hintermüller, M., Kunisch, K., von Oehsen, M., Scherzer, O.: Tube methods for BV regularization. J. Math. Imaging Vis. 19, 223–238 (2003)

    Article  Google Scholar 

  23. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  24. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962). (In Japanese)

    Google Scholar 

  25. Keeling, S.L., Haase, G.: Geometric multigrid for high-order regularizations of early vision problems. Appl. Math. Comput. 184(2), 536–556 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Keeling, S.L., Stollberger, R.: Nonlinear anisotropic diffusion filtering for multiscale edge enhancement. Inverse Probl. 18, 175–190 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lysaker, M., Tai, X.-C.: Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vis. 66(1), 5–18 (2006)

    Article  Google Scholar 

  28. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  Google Scholar 

  29. Mammen, E., van de Geer, S.: Locally adaptive regression splines. Ann. Stat. 25(1), 387–413 (1997)

    Article  MATH  Google Scholar 

  30. Mangasarian, O.L., Schumaker, L.L.: Discrete splines via mathematical programming. SIAM J. Control Optim. 9(2), 174–183 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mangasarian, O.L., Schumaker, L.L.: Best summation formulae and discrete splines. SIAM J. Numer. Anal. 10(3), 448–459 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  32. Morton, K.W., Mayers, L.M.: Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  33. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nordström, N.: Biased anisotropic diffusion—a unified regularization and diffusion approach to edge detection. Image Vis. Comput. 8, 318–327 (1990)

    Article  Google Scholar 

  35. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intel. 12, 629–639 (1990)

    Article  Google Scholar 

  36. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  37. Scherzer, O.: Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60(1), 1–27 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Scherzer, O., Weickert, J.: Relations between regularization and diffusion filtering. J. Math. Imaging Vis. 12, 43–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Schnörr, C.: Unique reconstruction of piecewise smooth images by minimizing strictly convex non-quadratic functionals. J. Math. Imaging Vis. 4, 189–198 (1994)

    Article  Google Scholar 

  40. Steidl, G.: A note on the dual treatment of higher order regularization functionals. Computing 76(1–2), 135–148 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Steidl, G., Didas, S., Neumann, J.: Relations between higher order TV regularization and support vector regression. In: Kimmel, R., Sochen, N., Weickert, J. (eds.) Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 515–527. Springer, Berlin (2005)

    Google Scholar 

  42. Steidl, G., Didas, S., Neumann, J.: Splines in higher order TV regularization. Int. J. Comput. Vis. 70(3), 241–255 (2006)

    Article  Google Scholar 

  43. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, New York (2002)

    MATH  Google Scholar 

  44. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 4(2), 1035–1038 (1963)

    Google Scholar 

  45. Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2001)

    Google Scholar 

  46. Tschumperlé, D., Deriche, R.: Vector-valued image regularization with PDE’s: A common framework for different applications. IEEE Trans. Image Process. 27(4), 1–12 (2005)

    Google Scholar 

  47. Tumblin, J., Turk, G.: LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: SIGGRAPH’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 83–90. ACM Press/Addison-Wesley, New York/Reading (1999)

    Chapter  Google Scholar 

  48. Vogel, O., Bruhn, A., Weickert, J., Didas, S.: Direct shape-from-shading with adaptive higher order regularisation. In: Sgallari, F., Murli, A., Paragios, N. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 4485, pp. 871–882. Springer, Berlin (2007)

    Chapter  Google Scholar 

  49. Wei, G.W.: Generalized Perona-Malik equation for image restoration. IEEE Signal Process. Lett. 6(7), 165–167 (1999)

    Article  Google Scholar 

  50. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Leipzig (1998)

    MATH  Google Scholar 

  51. Weickert, J., Benhamouda, B.: A semidiscrete nonlinear scale-space theory and its relation to the Perona-Malik paradox. In: Solina, F., Kropatsch, W.G., Klette, R., Bajcsy, R. (eds.) Advances in Computer Vision, pp. 1–10. Springer, Wien (1997)

    Google Scholar 

  52. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-based computation of image motion. Int. J. Comput. Vis. 45(3), 245–264 (2001)

    Article  MATH  Google Scholar 

  53. Whittaker, E.T.: On a new method of graduation. Proc. Edinb. Math. Soc. 41, 63–75 (1923)

    Google Scholar 

  54. Witkin, A.P.: Scale-space filtering. In: Proc. Eighth International Joint Conference on Artificial Intelligence, vol. 2, pp. 945–951. Karlsruhe, Germany, August 1983

  55. You, Y.-L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9(10), 1723–1730 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  56. Young, D.M.: Iterative Solution of Large Linear Systems. Dover, New York (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Didas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didas, S., Weickert, J. & Burgeth, B. Properties of Higher Order Nonlinear Diffusion Filtering. J Math Imaging Vis 35, 208–226 (2009). https://doi.org/10.1007/s10851-009-0166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0166-x

Keywords

Navigation