Skip to main content
Log in

A Spatial Regularization Approach for Vector Quantization

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Quantization, defined as the act of attributing a finite number of levels to an image, is an essential task in image acquisition and coding. It is also intricately linked to image analysis tasks, such as denoising and segmentation. In this paper, we investigate vector quantization combined with regularity constraints, a little-studied area which is of interest, in particular, when quantizing in the presence of noise or other acquisition artifacts. We present an optimization approach to the problem involving a novel two-step, iterative, flexible, joint quantizing-regularization method featuring both convex and combinatorial optimization techniques. We show that when using a small number of levels, our approach can yield better quality images in terms of SNR, with lower entropy, than conventional optimal quantization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic, Dordrecht (1992)

    MATH  Google Scholar 

  2. Max, J.: Quantizing for minimum distortion. IRE Trans. Inf. Theory 6(1), 7–12 (1960)

    Article  MathSciNet  Google Scholar 

  3. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. IEEE Trans. Commun. 28(1), 84–95 (1980)

    Article  Google Scholar 

  5. Wu, X.: On convergence of Lloyd’s method I. IEEE Trans. Inf. Theory 38(1), 171–174 (1992)

    Article  MATH  Google Scholar 

  6. Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J. Numer. Anal. 44(1), 102–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arya, V., Mittal, A., Joshi, R.C.: An efficient coding method for teleconferencing and medical image sequences. In: International Conference on Intelligent Sensing and Information Processing, pp. 8–13 (2005)

    Chapter  Google Scholar 

  8. Kawada, R., Koike, A., Nakajima, Y.: Prefilter control scheme for low bitrate tv distribution. In: IEEE International Conference on Multimedia and Expo, pp. 769–772 (2006)

    Chapter  Google Scholar 

  9. Chuang, K., Tzeng, H., Chen, S., Wu, J., Chen, T.: Fuzzy C-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9–15 (2006)

    Article  Google Scholar 

  10. Alvarez, L., Esclarín, J.: Image quantization using reaction-diffusion equations. SIAM J. Appl. Math. 57(1), 153–175 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  12. Bruce, J.D.: Optimum quantization. Technical Report 429, Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, MA (1965)

  13. Wu, X., Rokne, J.: An O(KNlog N) algorithm for optimum k-level quantization on histograms of n points. In: ACM Annual Computer Science Conference, Louisville, KY, pp. 339–343 (1989)

    Google Scholar 

  14. Wu, X.: Optimal quantization by matrix searching. J. Algorithms 12(4), 663–673 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Oxford (2004)

    Google Scholar 

  16. Veksler, O.: Efficient graph-based energy minimization methods in computer vision. Ph.D. thesis, Cornell University, Ithaca, NY, USA (1999)

  17. Vertan, C., Popescu, V., Buzuloiu, V.: Morphological like operators for color images. In: Proc. Eur. Sig. and Image Proc. Conference, Trieste, Italy, 10–13 September (1996)

    Google Scholar 

  18. Talbot, H., Evans, C., Jones, R.: Complete ordering and multivariate mathematical morphology. In: ISMM ’98: Proceedings of the Fourth International Symposium on Mathematical Morphology and Its Applications to Image and Signal Processing, pp. 27–34. Kluwer Academic, Norwell (1998)

    Google Scholar 

  19. Chanussot, J., Lambert, P.: Bit mixing paradigm for multivalued morphological filters. In: Sixth International Conference on Image Processing and Its Applications, vol. 2, Dublin, pp. 804–808 (1997)

    Chapter  Google Scholar 

  20. Hill, B., Roger, Th., Vorhagen, F.W.: Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula. ACM Trans. Graph. 16(2), 109–154 (1997)

    Article  Google Scholar 

  21. Eckart, C., Young, G.: The approximation of one by another of lower rank. Psychometrika 1(3), 211–218 (1936)

    Article  Google Scholar 

  22. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, New York (2010)

    Google Scholar 

  23. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Grundlehren, vol. 305, p. 306. Springer, Berlin (1993)

    Google Scholar 

  24. Pesquet, J.-C.: A parallel inertial proximal optimization method. Preprint (2010). http://www.optimization-online.org/DB_HTML/2010/11/2825.html

  25. Combettes, P.L., Pesquet, J.-C.: A proximal decomposition method for solving convex variational inverse problems. Inverse Probl. 24(6) (2008)

  26. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image Represent. 21(3), 193–199 (2010)

    Article  MathSciNet  Google Scholar 

  27. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19, 2345–2356 (2010)

    Article  MathSciNet  Google Scholar 

  29. Afonso, M., Bioucas-Dias, J., Figueiredo, M.: A fast algorithm for the constrained formulation of compressive image reconstruction and other linear inverse problems. In: Proc. Int. Conf. Acoust., Speech Signal Process., Dallas, USA (2010)

    Google Scholar 

  30. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  31. Chaux, C., Combettes, P.L., Pesquet, J.-C., Wajs, V.R.: A variational formulation for frame based inverse problems. Inverse Probl. 23, 1495–1518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  33. Ishikawa, H., Geiger, D.: Mapping image restoration to a graph problem. In: IEEE-EURASIP Workshop Nonlinear Signal Image Process., Antalya, Turkey, 20–23 June 1999. pp. 189–193 (1999)

    Google Scholar 

  34. Ford, J.L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  35. Ishikawa, H.: Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1333–1336 (2003)

    Article  Google Scholar 

  36. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  37. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  38. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: SSVM ’09: Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision, pp. 150–162. Springer, Berlin (2009)

    Chapter  Google Scholar 

  39. Trobin, W., Pock, T., Cremers, D., Bischof, H.: Continuous energy minimization via repeated binary fusion. In: ECCV, Part IV, Marseille, France, 12–18 October 2008, pp. 677–690 (2008)

    Google Scholar 

  40. Frahm, M., Zach, J.M., Niethammer, C.: Continuous maximal flows and Wulff shapes: Application to MRFs. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, pp. 1911–1918 (2009)

    Google Scholar 

  41. Veksler, O.: Graph cut based optimization for MRFs with truncated convex priors. In: IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, pp. 1–8 (2007)

    Chapter  Google Scholar 

  42. Komodakis, N., Tziritas, G., Paragios, N.: Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal-dual strategies. Comput. Vis. Image Underst. 112(1), 14–29 (2008)

    Article  Google Scholar 

  43. Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1436–1453 (2007)

    Article  Google Scholar 

  44. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation, part II: levelable functions, convex priors and non-convex cases. J. Math. Imaging Vis. 26(3), 277–291 (2006)

    Article  MathSciNet  Google Scholar 

  45. Zalesky, B.: Efficient determination of Gibbs estimators with submodular energy functions. http://arxiv.org/abs/math/0304041 (2003)

  46. Ishikawa, H.: Higher-order clique reduction in binary graph cut. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, pp. 2993–3000 (2009)

    Chapter  Google Scholar 

  47. Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84(3), 288–307 (2009)

    Article  Google Scholar 

  48. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In: Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, pp. 731–738 (2009)

    Google Scholar 

  49. Wu, X.: On initialization of Max’s algorithm for optimum quantization. IEEE Trans. Commun. 38(10), 1653–1656 (1990)

    Article  Google Scholar 

  50. Peric, Z., Nikolic, J.: An effective method for initialization of Lloyd-Max’s algorithm of optimal scalar quantization for Laplacian source. Informatica 18(2), 279–288 (2007)

    MathSciNet  MATH  Google Scholar 

  51. Katsavounidis, I., Kuo, C.-C.J., Zhang, Z.: A new initialization technique for generalized Lloyd iteration. IEEE Signal Process. Lett. 1(10), 144–146 (1994)

    Article  Google Scholar 

  52. Heckbert, P.: Color image quantization for frame buffer display. Comput. Graph. 16(3), 297–307 (1982)

    Article  Google Scholar 

  53. Wu, X.: Color quantization by dynamic programming and principal analysis. ACM Trans. Graph. 11(4), 348–372 (1992)

    Article  MATH  Google Scholar 

  54. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 359–374 (2001)

    Google Scholar 

  55. Ohno, Y.: CIE fundamentals for color measurements. In: IS&T NIP16 Conference, Vancouver, Canada, 16–20 October (2000)

    Google Scholar 

  56. Lempitsky, V.S., Rother, C., Roth, S., Blake, A.: Fusion moves for Markov random field optimization. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1392–1405 (2010)

    Article  Google Scholar 

  57. Kolmogorov, V.: A note on the primal-dual method for semi-metric labeling problem. Technical report, UCL (2007)

  58. Kolmogorov, V., Shioura, A.: New algorithms for convex cost tension problem with application to computer vision. Discrete Optim. 6(4), 378–393 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Jezierska.

Additional information

This work was supported by the Agence Nationale de la Recherche under grant ANR-09-EMER-004-03.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaux, C., Jezierska, A., Pesquet, JC. et al. A Spatial Regularization Approach for Vector Quantization. J Math Imaging Vis 41, 23–38 (2011). https://doi.org/10.1007/s10851-010-0241-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0241-3

Keywords

Navigation