Skip to main content
Log in

Modelling Convex Shape Priors and Matching Based on the Gromov-Wasserstein Distance

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present a novel convex shape prior functional with potential for application in variational image segmentation. Starting point is the Gromov-Wasserstein Distance which is successfully applied in shape recognition and classification tasks but involves solving a non-convex optimization problem and which is non-convex as a function of the involved shape representations. In two steps we derive a convex approximation which takes the form of a modified transport problem and inherits the ability to incorporate vast classes of geometric invariances beyond rigid isometries. We propose ways to counterbalance the loss of descriptiveness induced by the required approximations and to process additional (non-geometric) feature information. We demonstrate combination with a linear appearance term and show that the resulting functional can be minimized by standard linear programming methods and yields a bijective registration between a given template shape and the segmented foreground image region. Key aspects of the approach are illustrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aherne, F., Thacker, N.A., Rockett, P.: Optimal pairwise geometric histograms. In: Proc. British Machine Vision Conf. (BMVC), pp. 480–490 (1997)

    Google Scholar 

  2. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 509–522 (2002)

    Article  Google Scholar 

  3. Bronstein, A., Bronstein, M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vis. 89, 266–286 (2010)

    Article  Google Scholar 

  4. Burger, M., Franek, M., Schönlieb, C.-B.: Regularised regression and density estimation based on optimal transport. Appl. Math. Res. eXpress, March (2012)

  5. Burkard, R.E., Çela, P.P., Pitsoulis, L.: The Quadratic Assignment Problem. Handbook of Combinatorial Optimization. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  6. Burkard, R., Karisch, S., Rendl, F.: QAPLIB—a quadratic assignment problem library. J. Glob. Optim. 10, 391–403 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Charpiat, G., Faugeras, O., Keriven, R.: Shape statistics for image segmentation with prior. In: Computer Vision and Pattern Recognition (CVPR 2007), pp. 1–6 (2007)

    Chapter  Google Scholar 

  9. Cremers, D., Kohlberger, T., Schnörr, C.: Shape statistics in kernel space for variational image segmentation. Pattern Recognit. 36(9), 1929–1943 (2003)

    Article  MATH  Google Scholar 

  10. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007)

    Article  Google Scholar 

  11. Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003)

    Article  Google Scholar 

  12. Gorelick, L., Galun, M., Sharon, E., Basri, R., Brandt, A.: Shape representation and classification using the Poisson equation. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1991–2005 (2006)

    Article  Google Scholar 

  13. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  14. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comput. Vis. 60, 225–240 (2004)

    Article  Google Scholar 

  15. Korte, B., Vygen, J.: Combinatorial Optimization, 4th edn. Springer, Berlin (2008)

    Google Scholar 

  16. Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sci. 4(4), 1049–1096 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. McAuley, J.J., de Campos, T., Caetano, T.S.: Unified graph matching in Euclidean spaces. In: Computer Vision and Pattern Recognition (CVPR 2010), pp. 1871–1878 (2010)

    Google Scholar 

  18. Mémoli, F.: Gromov-Wasserstein distances and the metric approach to object matching. Found. Comput. Math. 11, 417–487 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mémoli, F.: A spectral notion of the Gromov-Wasserstein distance and related methods. Appl. Comput. Harmon. Anal. 30(3), 363–401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5, 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: Computer Vision and Pattern Recognition (CVPR 2009), pp. 810–817 (2009)

    Chapter  Google Scholar 

  22. Rabin, J., Peyré, G., Cohen, L.: Geodesic shape retrieval via optimal mass transport. In: Computer Vision—ECCV 2010. LNCS, vol. 6315, pp. 771–784. Springer, Berlin (2010)

    Chapter  Google Scholar 

  23. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-Beltrami spectra as “shape-dna” of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  24. Schellewald, C., Roth, S., Schnörr, C.: Evaluation of a convex relaxation to a quadratic assignment matching approach for relational object views. Image Vis. Comput. 25, 1301–1314 (2007)

    Article  Google Scholar 

  25. Schmitzer, B., Schnörr, C.: Convex coupling continuous cuts and shape priors. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) Scale Space and Variational Methods in Computer Vision (SSVM 2011). LNCS, vol. 6667, pp. 423–434. Springer, Berlin (2011)

    Chapter  Google Scholar 

  26. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. In: Proc. Nat. Acad. Sci., pp. 1591–1595 (1995)

    Google Scholar 

  27. Sundaramoorthi, G., Mennucci, A., Soatto, S., Yezzi, A.: A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering. SIAM J. Imaging Sci. 4(1), 109–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Van Loan, C.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123, 85–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the German National Science Foundation (DFG) grant GRK 1653.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schmitzer.

Appendix

Appendix

Step 2 of the Proof of Proposition 4.5

We show by construction for any \(\rho\in\mathcal{M}(\phi_{X\,\sharp} \mu_{X}, \phi_{Y\,\sharp}\mu_{Y})\) the existence of some \(\mu\in\mathcal {M}(\mu_{X},\mu_{Y})\) such that ρ=ϕ μ. For any element (s X ,s Y )∈S X ×S Y construct the pre-image measure

where this element wise definition for each (x,y) is extended to all subsets of X×Y by

$$\mu_{(s_X,s_Y)}(\sigma) = \sum_{(x,y) \in\sigma} \mu_{(s_X,s_Y)}(x,y). $$

Now consider \(\mu= \sum_{(s_{X},s_{Y}) \in S_{X} \times S_{Y}} \mu_{(s_{X},s_{Y})}\): First verify that it is indeed contained in \(\mathcal {M}(\mu_{X},\mu_{Y})\):

since μ(x,y)≥0 for all (x,y). Furthermore

and likewise

for all measurable subsets σX×Y, σ X X, σ Y Y.

Now check whether ϕ μ=ρ:

Consequently any \(\rho\in\mathcal{M}(\phi_{X\,\sharp} \mu_{X}, \phi_{Y\,\sharp}\mu_{Y})\) is also contained in \(\phi_{\sharp}\mathcal{M}(\mu_{X},\mu_{Y})\) and the two sets are equal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitzer, B., Schnörr, C. Modelling Convex Shape Priors and Matching Based on the Gromov-Wasserstein Distance. J Math Imaging Vis 46, 143–159 (2013). https://doi.org/10.1007/s10851-012-0375-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0375-6

Keywords

Navigation