Skip to main content
Log in

Variational Image Restoration with Constraints on Noise Whiteness

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We propose a novel variational framework for image restoration based on the assumption that noise is additive and white. In particular, the proposed variational model uses total variation regularization and forces the resemblance of the residue image to a white noise realization by imposing constraints in the frequency domain. The whiteness constraint constitutes the key novelty behind our approach. The restored image is efficiently computed by the constrained minimization of an energy functional using an alternating directions methods of multipliers procedure. Numerical examples show that the novel approach is particularly suited for textured image restorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Almeida, M., Figueiredo, M.: Parameter estimation for blind and non-blind deblurring using residual whiteness measures. IEEE Trans. Image Process. 22(7), 2751–2763 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bauer, F., Lukas, M.A.: Comparing parameter choice methods for regularization of ill-posed problems. Math. Comput. Simul. 81(9), 1795–1841 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Calvetti, D., Reichel, L.: Tikhonov regularization of large linear problems. BIT Numer. Math. 43(2), 263–283 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chan, R.H., Lanza, A., Morigi, S., Sgallari, F.: An adaptive strategy for the restoration of textured images using fractional order regularization. Numer. Math. 6(1), 276–296 (2013)

    MATH  MathSciNet  Google Scholar 

  5. Chan, R.H., Tao, M., Yuan, X.M.: Constrained total variational deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Image. Sci. 6, 680–697 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  7. Glowinski, R., Marrocco, A.: Sur l’approximation par eléments finis dordre un, et la résolution par penalisation-dualité d’une classe de problémes de Dirichlet non linéaires. RAIRO Anal. Numér. 9, 41–76 (1975)

    MATH  MathSciNet  Google Scholar 

  8. Goldstein, T., Osher, S.: The split Bregman method for L1-Regularized Prolbems. SIAM J. Image Sci. 2, 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gray, R.M., Davisson, L.D.: An Introduction to Statistical Signal Processing. Cambridge University Press, Cambridge, UK (2010)

    MATH  Google Scholar 

  10. Hansen, P.C., Kilmer, M.E., Kjeldsen, R.H.: Exploiting residual information in the parameter choice for discrete ill-posed problems. BIT Numer. Math. 46(1), 41–59 (2006)

  11. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAN, Philadelphia, PA, USA (1998)

  12. Jung, M., Bresson, X., Chan, T.F., Vese, L.A.: Nonlocal Mumford-Shah regularizers for color image restoration. IEEE Trans. Image Process. (TIP) 20(6), 1583–1598 (2011)

    Article  MathSciNet  Google Scholar 

  13. Jung, M., Vese, L.A.: Image Restoration via Nonlocal Mumford-Shah Regularizers, UCLA CAM report 09–09, (2009)

  14. Lanza, A., Morigi, S., Sgallari, F., Yezzi, A.J.: Variational image denoising based on autocorrelation whiteness. SIAM J. Imaging Sci. 6(4), 1931–1955 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Morini, B., Porcelli, M., Chan, R.H.: A reduced Newton method for constrained linear least-squares problems. J. Comput. Appl. Math. 233, 2200–2212 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  17. Rust, B.W., O’Leary, D. P.: Residual periodograms for choosing regularization parameters for ill-posed problems. Inverse Probl. 4(3), 034005 (30pp) (2008)

  18. Rust, B.W.: Parameter selection for constrained solutions to ill-posed problems. Comput. Sci. Stat. 32, 333–347 (2000)

    Google Scholar 

  19. Tao, M., Yang, J.: Alternating direction algorithms for total variation deconvolution in image reconstruction, Tech. Rep. TR0918, Department of Mathematics, Nanjing University, China (2009)

  20. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alteranting minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1, 948–951 (2008)

    Article  MathSciNet  Google Scholar 

  21. Wen, Y., Chan, R.H.: Parameter selection for total variation based image restoration using discrepancy principle. IEEE Trans. Image Process. 21(4), 1770–1781 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Morigi.

Appendix

Appendix

Proof of Proposition (3.1). First, the problem in (3.11) can be equivalently rewritten as follows:

$$\begin{aligned} x^*{\leftarrow }\, \mathrm {arg} \min _{x \in {\mathbb R}^n} \left\{ \, \varphi (x) = \alpha \, \Vert \, x \, \Vert _2 \,{+}\, \frac{\beta }{2} \left\| \, x - q \, \right\| _2^2 \,\right\} \, , \end{aligned}$$
(5.1)

with \(q \in {\mathbb R}^n\) defined as in (3.13). In Fig. 8a we give a geometric representation of the problem in the \(2\)-dimensional case. To prove the proposition statement in (3.12) we consider separately the two cases \(\Vert \, q \, \Vert _2 > 0\) and \(\Vert \, q \, \Vert _2 = 0\).

Fig. 8
figure 8

Geometric representation of the problem in (5.1)

Case \(\Vert \, q \, \Vert _2 > 0\). First, we prove that the solution \(x^*\) of (5.1) lies on the half-line \(Oq\) with origin at the \(n\)-dimensional null vector \(O\) and passing through \(q\), represented in solid red in Fig. 8a. To this purpose, we demonstrate that for every point \(p\) not lying on \(Oq\) there always exists a point \(p^*\) on \(Oq\) providing a lower value of the objective function in (5.1), that is a point \(p^*\) such that \(\varphi (p) - \varphi (p^*) > 0\). In particular, we define \(p^*\) as the intersection point between the half-line \(Oq\) and the \(n\)-dimensional sphere with center in \(O\) and passing through \(p\), depicted in solid blue in Fig. 8a. Noting that \(\Vert p^*\Vert _2 = \Vert p \Vert _2\) by construction, we can thus write:

$$\begin{aligned}&\varphi (p) - \varphi (p^*) = \alpha \left( \Vert \, p \, \Vert _2 - \Vert \, p^* \, \Vert _2 \right) \nonumber \\&+ \frac{\beta }{2} \left( \Vert \, p - q \, \Vert _2^2 - \Vert \, p^* - q \, \Vert _2^2 \right) \nonumber \\&= \frac{\beta }{2} \left( \Vert \, p \, \Vert _2^2 + \Vert \, q \, \Vert _2^2 - 2 \, \langle \, p \, , \, q \rangle - \Vert \, p^* \, \Vert _2^2 - \Vert \, q \, \Vert _2^2\right. \nonumber \\&\left. + 2 \, \langle \, p^* \, , \, q \rangle \right) \nonumber \\&= \beta \, \langle \, p^* - p \, , \, q \, \rangle \nonumber \\&= \beta \, \Vert \, p^* - p \, \Vert _2 \, \Vert \, q \, \Vert _2 \, cos\left( \widehat{O \, p^* p} \right) \, . \end{aligned}$$
(5.2)

Since \(\beta > 0\), \(\Vert q \Vert _2 >0\) for hypothesis, \(p \ne p^*\) by construction, and noting that the angle \(\widehat{O \, p^* p}\) is always acute, we can conclude that the expression in (5.2) is positive. Hence, the solution \(x^*\) of (5.1) lies on the half-line \(Oq\), i.e. \(x^* = \xi ^*q\), \(\xi ^* \ge 0\).

By setting \(x = \xi q\), \(\xi \ge 0\), the \(n\)-dimensional minimization problem in (5.1) can be transformed into the following \(1\)-dimensional problem:

$$\begin{aligned}&\xi ^* {\leftarrow }\, \mathrm {arg} \min _{\xi \ge 0} \left\{ \, \alpha \, \Vert \, \xi q \, \Vert _2 \,{+}\, \frac{\beta }{2} \left\| \, \xi q - q \, \right\| _2^2 \,\right\} \nonumber \\&{\leftarrow }\, \mathrm {arg} \min _{\xi \ge 0} \left\{ \, \alpha \, \Vert \, q \, \Vert _2 \xi \,{+}\, \frac{\beta }{2} \left\| \, q \, \right\| _2^2 \left( \xi - 1 \right) ^2 \,\right\} \nonumber \\&{\leftarrow }\, \mathrm {arg} \min _{\xi \ge 0} \left\{ \, \alpha \xi \,{+}\, \frac{\beta }{2} \left\| \, q \, \right\| _2 \left( \xi - 1 \right) ^2\,\right\} \nonumber \\&{\leftarrow }\, \mathrm {arg} \min _{\xi \ge 0} \left\{ \, g(\xi ) = \left( \frac{\beta }{2} \left\| \, q \, \right\| _2 \right) \xi ^2 \,{+}\, \left( \alpha - \beta \, \left\| \, q \, \right\| _2 \right) \xi \,\right\} \, . \nonumber \\ \end{aligned}$$
(5.3)

Since the coefficient \(\frac{\beta }{2} || \, q \, ||_2\) is strictly positive (in fact, we are assuming that \(\beta > 0\) and \(\Vert q \Vert _2 > 0\)), the function \(g(\xi )\) in (5.3) represents a strictly convex parabola passing through the origin and having its unconstrained minimum at the abscissa of its vertex:

$$\begin{aligned} \xi _{v} = 1 - \frac{\alpha }{\beta \Vert \, q \, \Vert _2} \, . \end{aligned}$$
(5.4)

Hence, for what concern the constrained minimization in (5.3) we have the two cases illustrated in Fig. 8b. In formulas:

$$\begin{aligned} \xi ^* = \left\{ \begin{array}{lll} \xi _v &{} \, \mathrm {if} \, &{} \xi _v \ge 0 \\ 0 &{} \, \mathrm {if} \, &{} \xi _v < 0 \end{array} \right. \,\, , \,\; \mathrm {that} \, \mathrm {is:} \quad \, \xi ^* = \max \left\{ \xi _v \, , \, 0 \right\} \, . \end{aligned}$$
(5.5)

Therefore, from (5.4) and (5.5) the solution \(x^* = \xi ^* q\) of the \(n\)-dimensional problem in (5.1) is:

$$\begin{aligned} x^* = \xi ^* q = \max \left\{ 1 - \frac{\alpha }{\beta \Vert \, q \, \Vert _2} \, , \, 0 \right\} q \, , \end{aligned}$$
(5.6)

thus proving case a) of the proposition statement in (3.12).

Case \(\Vert \, q \, \Vert _2 = 0\). Since \(q\) is the \(n\)-dimensional null vector, the objective function minimized in (5.1) depends on \(x\) only through its norm \(\Vert x \Vert _2\). Hence, the minimizers will be all the vectors \(x^*\) belonging to the \(n\)-dimensional sphere \(\Vert x \Vert _2 = r^*\) with radius \(r^* \ge 0\) given by the solution of the constrained \(1\)-dimensional minimization problem obtained from (5.1) by setting \(q = 0\) and \(r = \Vert x \Vert _2\), that is

$$\begin{aligned} r^* = \mathrm {arg} \min _{r \ge 0} \left\{ \, \alpha \, r \,{+}\, \frac{\beta }{2} r^2 \,\right\} \, . \end{aligned}$$
(5.7)

The minimization problem in (5.7) is very similar to problem (5.3) and the solution can be analogously computed as follows:

$$\begin{aligned} r^* = \max \left\{ \, -\frac{\alpha }{\beta } \, , \, 0 \, \right\} . \end{aligned}$$
(5.8)

Therefore, if \(\Vert q \Vert _2 = 0\) the solution of (5.1) is given by:

$$\begin{aligned} x^* = 0 \quad \quad \mathrm {if} \quad \quad \alpha \ge 0 \, , \end{aligned}$$
(5.9)

while we get an infinite number of solutions

$$\begin{aligned} x^* \,{\in }\,\, \left\{ \, x \in {\mathbb R}^n : \,\, \Vert \, x \, \Vert _2 = r^* \,\right\} \quad \quad \mathrm {if} \quad \quad \alpha < 0 \, , \end{aligned}$$
(5.10)

with \(r^*\) defined in (5.8). This proves cases b) and c) of the proposition statement in (3.12). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanza, A., Morigi, S. & Sgallari, F. Variational Image Restoration with Constraints on Noise Whiteness. J Math Imaging Vis 53, 61–77 (2015). https://doi.org/10.1007/s10851-014-0549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-014-0549-5

Keywords

Navigation