Skip to main content
Log in

Directional Filters for Color Cartoon+Texture Image and Video Decomposition

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The decomposition of an image in a geometrical and a textural part has shown to be a challenging problem with several applications. Since the theoretical breakthrough of Y. Meyer, many variational methods and minimization techniques have been proposed for this task. This paper uses a different approach based on low/high-pass filtering with directional filters. This approach modifies the algorithm proposed in Buades et al. (IEEE Trans Image Process 19(8):1978–1986, 2010) improving its performance near image discontinuities while keeping the simplicity and rapidity of a linear model. Comparisons with variational methods illustrate the flexibility of the proposed algorithm. We illustrate how the proposed method is the only one dealing correctly with frame-by-frame video processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. A grayscale (resp. color) image is represented by a function\(f:(x,y) \rightarrow {\mathbb {R}}\) (resp. \({\mathbb {R}}^3\)), where \(\Omega \) is an open subset of \({\mathbb {R}}^2\), typically a rectangle or square. The image is defined on a continuous domain by interpolation of the values on a discrete set of pixels.

  2. Web address: https://sites.google.com/site/thunsukeono/.

  3. On a 3.2GHz Intel Core i5 processor (4 cores) with 8GB of RAM memory

  4. Excerpt from “San Francisco Zoo” video, http://vimeo.com/365747, Eugenia Loli, CC BY 3.0.

References

  1. Aubert, G., Aujol, J.: Modeling very oscillating signals. Application to image processing. Appl. Math. Optim. 51(2), 163–182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aujol, J., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image Decomposition Application to SAR images. Lecture Notes in Computer Science, vol. 2695, pp. 297–312. Springer, Berlin (2003)

    MATH  Google Scholar 

  3. Aujol, J., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63(1), 85–104 (2005)

    Article  MathSciNet  Google Scholar 

  4. Aujol, J., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition: modeling, algorithms and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006)

    Article  MATH  Google Scholar 

  5. Bertalmio, M., Vese, L., Sapiro, G., Osher, S.: Simultaneous structure and texture image inpainting. IEEE Trans. Image Process. 12(8), 882–889 (2003)

    Article  Google Scholar 

  6. Blanchet, G., Buades, A., Coll, B., Morel, J., Rouge, B.: Impact of JPEG2000 compression in correlation algorithms. Is subsampling a better compression strategy? (2010). https://hal.archives-ouvertes.fr/hal-00462200

  7. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buades, A., Le, T., Morel, J.M., Vese, L.: Fast cartoon+texture image filters. IEEE Trans. Image Process. 19(8), 1978–1986 (2010)

    Article  MathSciNet  Google Scholar 

  9. Calderero, F., Caselles, V.: Recovering relative depth from low-level features without explicit T-junction detection and interpretation. Int. J. Comput. Vis. 104(1), 38–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    Article  MathSciNet  Google Scholar 

  11. Cao, K., Liu, E., Jain, A.K.: Segmentation and enhancement of latent fingerprints: a coarse to fine ridge structure dictionary. IEEE Transl. Pattern Anal. Mach. Intell. 36(9), 1847–1859 (2014)

    Article  Google Scholar 

  12. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MathSciNet  Google Scholar 

  13. Dubois, S., Péteri, R., Ménard, M.: Decomposition of dynamic textures using morphological component analysis. IEEE Trans. Circuits Syst. Video Technol. 22(2), 188–201 (2012)

    Article  MATH  Google Scholar 

  14. Duval, V., Aujol, J., Gousseau, Y.: The TVL1 model: a geometric point of view. Multiscale Model. Simul. 8(1), 154–189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fadili, M., Starck, J.L., Elad, M., Donoho, D.: Mcalab: reproducible research in signal and image decomposition and inpainting. IEEE Comput. Sci. Eng. 12(1), 44–62 (2010)

    Article  Google Scholar 

  16. Fadili, M.J., Starck, J.L., Bobin, J., Moudden, Y.: Image decomposition and separation using sparse representations: an overview. Proc. IEEE 98(6), 983–994 (2010)

    Article  Google Scholar 

  17. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford University (2002)

  18. Figueiredo, I., Kumar, S., Oliveira, C., Ramos, J., Engquist, B.: Automated lesion detectors in retinal fundus images. Comput. Biol. Med. 66, 47–65 (2014)

    Article  Google Scholar 

  19. Haddad, A.G., Meyer, Y.: An improvement of Rudin-Osher-Fatemi model. Appl. Comput. Harmon. Anal. 22(3), 319–334 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, X., Xia, W., Peng, S., Hwang, W.L.: Multiple component predictive coding framework of still images. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2011)

  21. Jiang, D.H., Xu, G.B.: Image zooming based on cartoon and texture decomposition. Adv. Mater. Res. 457–458, 1002–1007 (2012)

    Google Scholar 

  22. Kalfon, M., Porat, M.: A new approach to texture recognition using decorrelation stretching. International Journal of Future Computer and Communication 2(1), 49–53 (2013)

    Article  Google Scholar 

  23. Le Guen, V.: Cartoon + texture image decomposition by the TV-L1 model. Image Process. Line 4, 204–219 (2014). doi:10.5201/ipol.2014.103

    Article  Google Scholar 

  24. Levine, S.: An adaptive Variational Model for Image Decomposition. Lecture Notes in Computer Science, vol. 3757, pp. 382–397. Springer, Berlin (2005)

    Google Scholar 

  25. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, vol. 22. American Mathematical Society, Providence (2001)

    Google Scholar 

  26. Mitzel, D., Pock, T., Schoenemann, T., Cremers, D.: Video super resolution using duality based tv-l 1 optical flow. Pattern Recognition, pp. 432–441. Springer, Belin (2009)

    Chapter  Google Scholar 

  27. Ono, S., Miyata, T., Yamada, I.: Cartoon-texture image decomposition using blockwise low-rank texture characterization. IEEE Trans. Image Process. 23(3), 1128–1142 (2014)

    Article  MathSciNet  Google Scholar 

  28. Osher, S., Kindermann, S., Jones, P.: Deblurring and denoising of images by nonlocal functionals. SIAM Multiscale Model. Simul. 4(4), 1091–1115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Piffet, L.: A locally anisotropic model for image texture extraction. Mathematical Image Processing. Springer, Berlin (2011)

    Google Scholar 

  30. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schaeffer, H., Osher, S.: A low patch-rank interpretation of texture. SIAM J. Imaging Sci. 6(1), 226–262 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Secker, A., Taubman, D.: Motion-compensated highly scalable video compression using an adaptive 3d wavelet transform based on lifting. In: Proceedings of International Conference on Image Processing, vol. 2, pp. 1029–1032. IEEE (2001)

  33. Starck, J., Elad, M., Donoho, D.: Image decomposition: separation of texture from piecewise smooth content. In: Proceedings of SPIE Annual Meeting, vol. 5207, pp. 571–582 (2003)

  34. Starck, J.L., Elad, M., Donoho, D.L.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 14(10), 1570–1582 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1), 553–572 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vese, L., Osher, S.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vis. 20(1), 7–18 (2004)

    Article  MathSciNet  Google Scholar 

  37. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for TV-L1 optical flow. Statistical and Geometrical Approaches to Visual Motion Analysis. Lecture Notes in Computer Science, vol. 5604, pp. 23–45. Springer, Berlin (2009)

  38. Yanovsky, I., Davis, A.B.: Separation of a cirrus layer and broken cumulus clouds in multispectral images. IEEE Trans. Geosci. Remote Sens. 53(5), 2275–2285 (2015)

    Article  Google Scholar 

  39. Yin, W., Goldfarb, D., Osher, S.: A comparison of three total variation based texture extraction models. J. Vis. Commun. Image Represent. 18(3), 240–252 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Lisani.

Additional information

This paper has supplementary downloadable material provided by the authors (http://dmi.uib.es/~lisani/JMIVcartoon/). The material includes eight videos associated to Figs. 89 and 10 of the manuscript, in mp4 format. Contact joseluis.lisani@uib.es for further questions about this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buades, A., Lisani, J.L. Directional Filters for Color Cartoon+Texture Image and Video Decomposition. J Math Imaging Vis 55, 125–135 (2016). https://doi.org/10.1007/s10851-015-0617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0617-5

Keywords

Navigation