Skip to main content
Log in

Influence of the Analysis Window on the Metrological Performance of the Grid Method

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper deals with the grid method in experimental mechanics. It is one of the full-field methods available for estimating in-plane displacement and strain components of a specimen submitted to a load producing slight local deformation. This method consists in, first, depositing a regular grid on the surface of a specimen, and, second, comparing images of the grid before and after deformation. A possibility is to perform windowed Fourier analysis to measure these deformations as changes of the local grid aspect. The aim of the present study is to investigate the choice of the analysis window and its influence on the metrological performances of the grid method. Two aspects are taken into account, namely the reduction of the harmonics of the grid line profile, which are not pure sine because of manufacturing constraints, and the transfer of the digital noise from the imaged grid to the mechanical measurements. A theoretical study and a numerical assessment are presented. In addition, the interested reader can find in this paper a calculation of the Wigner–Ville transform of a triangular function which, to the best of the present authors’ knowledge, is not available in the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. For any real-valued function f, the Wigner–Ville transform [7, 16, 22] of f is \({{\mathcal {W}}}f(x,\lambda )=\int f(x+\tau /2)f(x-\tau /2) e^{-i\tau \lambda }\;\text {d}\tau \). It is a real-valued function.

References

  1. Abrahamsen, P.: A review of Gaussian random fields and correlation functions. Technical report, Norwegian Computing Center, Oslo (1997)

  2. Avril, S., Ferrier, E., Vautrin, A., Hamelin, P., Surrel, Y.: A full-field optical method for the experimental analysis of reinforced concrete beams repaired with composites. Compos. A 35(7–8), 873–884 (2004)

    Article  Google Scholar 

  3. Badulescu, C., Grédiac, M., Mathias, J.D.: Investigation of the grid method for accurate in-plane strain measurement. Meas. Sci. Technol. 20(9), 095,102 (2009)

    Article  Google Scholar 

  4. Badulescu, C., Grédiac, M., Mathias, J.D., Roux, D.: A procedure for accurate one-dimensional strain measurement using the grid method. Exp. Mech. 49(6), 841–854 (2009)

    Article  Google Scholar 

  5. Balandraud, X., Barrera, N., Biscari, P., Grédiac, M., Zanzotto, G.: Strain intermittency in shape memory alloys. Physi. Rev. B 91(17), 174, 111 (2015)

    Article  Google Scholar 

  6. Chrysochoos, A., Surrel, Y.: Basics of metrology and introduction to techniques. In: Grédiac, M., Hild, F. (eds.) Full-Field Measurements and Identification in Solid Mechanics, pp. 1–29. Wiley, Hoboken (2012)

    Chapter  Google Scholar 

  7. Cohen, L.: Time-Frequency Analysis. Prentice-Hall, Upper Saddle River (1995)

    Google Scholar 

  8. Dai, X., Xie, H., Wang, Q.: Geometric phase analysis based on the windowed Fourier transform for the deformation field measurement. Opt. Laser Technol. 58, 119–127 (2014)

    Article  Google Scholar 

  9. Delpueyo, D., Grédiac, M., Balandraud, X., Badulescu, C.: Investigation of martensitic microstructures in a monocrystalline Cu-Al-Be shape memory alloy with the grid method and infrared thermography. Mech. Mater. 45(1), 34–51 (2012)

    Article  Google Scholar 

  10. Flandrin, P.: Separability, positivity, and minimum uncertainty in time-frequency energy distributions. J. Math. Phys. 39(8), 4016–4040 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grédiac, M., Sur, F.: Effect of sensor noise on the resolution and spatial resolution of displacement and strain maps estimated with the grid method. Strain 50(1), 1–27 (2014)

    Article  Google Scholar 

  12. Grédiac, M., Sur, F., Blaysat, B.: The grid method for in-plane displacement and strain measurement: a review and analysis. Strain (2016). To be published

  13. Grédiac, M., Toussaint, E.: Studying the mechanical behaviour of asphalt mixtures with the grid method. Strain 49(1), 1–15 (2013)

    Article  Google Scholar 

  14. Harris, F.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 51–83 (1978)

    Article  Google Scholar 

  15. Healey, G., Kondepudy, R.: Radiometric CCD camera calibration and noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 267–276 (1994)

    Article  Google Scholar 

  16. Hlawatsch, F., Boudreaux-Bartels, G.: Linear and quadratic time-frequency signal representations. IEEE Signal Process. Mag. 9(2), 21–67 (1992)

    Article  Google Scholar 

  17. Huang, L., Kemao, Q., Pan, B., Asundi, A.: Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Opt. Lasers Eng. 48, 141–148 (2010)

    Article  Google Scholar 

  18. Huntley, J.: Automated fringe pattern analysis in experimental mechanics: a review. J. Strain Anal. Eng. Des. 33(2), 105–125 (1998)

    Article  Google Scholar 

  19. JCGM member organizations: International vocabulary of metrology. Basic and General Concepts and Associated Terms (VIM) (2008)

  20. Kemao, Q.: Windowed Fourier transform for fringe pattern analysis. Appl. Opt. 43(13), 2695–2702 (2004)

    Article  Google Scholar 

  21. Kemao, Q.: Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations. Opt. Lasers Eng. 45(2), 304–317 (2007)

    Article  MathSciNet  Google Scholar 

  22. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  23. Molimard, J., Surrel, Y.: Grid method, moiré and deflectometry. In: Grédiac, M., Hild, F. (eds.) Full-field Measurements and Identification in Solid Mechanics, pp. 61–89. Wiley, Hoboken (2012)

  24. Moulart, R., Rotinat, R., Pierron, F., Lerondel, G.: On the realization of microscopic grids for local strain measurement by direct interferometric photolithography. Opt. Lasers Eng. 45(12), 1131–1147 (2007)

    Article  Google Scholar 

  25. Murthagh, F., Starck, J., Bijaoui, A.: Image restoration with noise suppression using a multiresolution support. Astron. Astrophys. 112, 179–189 (1995)

    Google Scholar 

  26. Peevers, A.W.: A real time 3D signal analysis/synthesis tool based on the short time Fourier transform. Technical report, Department of Electrical Engineering, University of California, Berkeley (2004)

  27. Pierron, F., Zhu, H., Siviour, C.: Beyond Hopkinson’s bar. Philos. Trans. R. Soc. A 372(2023), 20130,195 (2014)

    Article  Google Scholar 

  28. Pitti, R.M., Badulescu, C., Grédiac, M.: Characterization of a cracked specimen with full-field measurements: direct determination of the crack tip and energy release rate calculation. Int. J. Fract. 187(1), 109–121 (2014)

    Article  Google Scholar 

  29. Reu, P.L., Quintana, E., Lon, K.: Using sampling moiré to extract displacement information from X-ray images of molten salt batteries. In: Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 3, pp. 331–336 (2014)

  30. Ri, S., Muramatsu, T., Saka, M., Nanbara, K., Kobayashi, D.: Noncontact deflection distribution measurement for large-scale structures by advanced image processing technique. Mater. Trans. 53(2), 323–329 (2012)

    Article  Google Scholar 

  31. Sur, F., Blaysat, B., Grédiac, M.: Determining displacement and strain maps immune from aliasing effect with the grid method (2016). Submitted for publication

  32. Sur, F., Grédiac, M.: Towards deconvolution to enhance the grid method for in-plane strain measurement. AIMS Inverse Probl. Imaging 8(1), 259–291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sur, F., Grédiac, M.: On noise reduction in strain maps obtained with the grid method by averaging images affected by vibrations. Opt. Lasers Eng. 66, 210–222 (2015)

    Article  Google Scholar 

  34. Surrel, Y.: Design of algorithms for phase measurements by the use of phase stepping. Appl. Opt. 35(1), 51–60 (1996)

    Article  Google Scholar 

  35. Surrel, Y.: Additive noise effect in digital phase detection. Appl. Opt. 36(1), 271–276 (1997)

    Article  Google Scholar 

  36. Surrel, Y.: Fringe analysis. Photomechanics. Topics in Applied Physics, vol. 77, pp. 55–102. Springer, Berlin (2000)

    Chapter  Google Scholar 

  37. Wittevrongel, L., Lava, P., Lomov, S., Debruyne, D.: A self adaptive global digital image correlation algorithm. Exp. Mech. 55(2), 361–378 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially funded by GdR CNRS ISIS (Timex project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Sur.

Appendices

Proof of Proposition 1

Proof

Let E be the expectation of any random variable. Since n is a white noise of variance v, we have \(E(n(x_i,y_j)n(x_k,y_l)) = 0\) if \(x_i\ne x_k\) or \(y_j\ne y_l\), and \(=v\) otherwise.

By expanding the real and imaginary parts of \(\widehat{n}\) and replacing the discrete Riemann sums by integrals:

$$\begin{aligned}&\text {Cov}(\text {Re}(\widehat{n}(\xi ,\eta )),\text {Re}(\widehat{n}(\xi ',\eta ')))\nonumber \\&\quad = v \sum _{i,j} w_{\varvec{\sigma }}(x_i-\xi ,y_j-\eta ) w_{\varvec{\sigma }}(x_i-\xi ',y_j-\eta ')\nonumber \\&\qquad \cdot \cos ^2(2\pi f x_i) (\varDelta _x\varDelta _y)^2\nonumber \\&\quad \simeq v \varDelta _x \varDelta _y \iint w_{\varvec{\sigma }}(x-\xi ,y-\eta ) w_{\varvec{\sigma }}(x-\xi ',y-\eta ') \nonumber \\&\quad \cdot \cos ^2(2\pi f x) \;\text {d}x\;\text {d}y \end{aligned}$$
(98)

Let us define:

$$\begin{aligned} I(\xi ,\eta ,\xi ',\eta ')= & {} \iint w_{\varvec{\sigma }}(x-\xi ,y-\eta ) w_{\varvec{\sigma }}(x-\xi ',y-\eta ') \nonumber \\&\cos ^2(2\pi f x) \;\text {d}x \;\text {d}y \end{aligned}$$
(99)

We obtain:

$$\begin{aligned}&I(\xi ,\eta ,\xi ',\eta ')=\frac{1}{2} \biggl ( \int w^{\mathbf {x}}_{\sigma _x}(x-\xi ) w^{\mathbf {x}}_{\sigma _x}(x-\xi ') \biggr .\nonumber \\&\qquad \biggl . (1+\cos (4\pi f x)) \;\text {d}x \biggr ) \left( \int w^{\mathbf {y}}_{\sigma _y}(y-\eta ) w^{\mathbf {y}}_{\sigma _y}(y-\eta ') \;\text {d}y \right) \nonumber \\&\quad = \frac{1}{2} \biggl ( w^{\mathbf {x}}_{\sigma _x}*w^{\mathbf {x}}_{\sigma _x} (\xi -\xi ') +\biggr .\nonumber \\&\qquad \biggl . \text {Re}\left( e^{-2i\pi f (\xi +\xi ')}\int w^{\mathbf {x}}_{\sigma _x}(x-\alpha )w^{\mathbf {x}}_{\sigma _x}(x+\alpha ) e^{-4i\pi f x} \;\text {d}x\right) \biggr )\nonumber \\&\qquad w^{\mathbf {y}}_{\sigma _y}*w^{\mathbf {y}}_{\sigma _y} (\eta -\eta ') \end{aligned}$$
(100)

where \(\alpha =(\xi -\xi ')/2\).

Since the analysis window is symmetric, we have \(w^{\mathbf {x}}_{\sigma _x}(x-\alpha )=w^{\mathbf {x}}_{\sigma _x}(\alpha -x)\). In addition note that

$$\begin{aligned} \int w^{\mathbf {x}}_{\sigma _x}(x-\alpha )w^{\mathbf {x}}_{\sigma _x}(x+\alpha ) e^{-4i\pi f x} \;\text {d}x = \frac{1}{2} {{\mathcal {W}}} w^{\mathbf {x}}_{\sigma _x}(\alpha , 2\pi f) \end{aligned}$$
(101)

where \({{\mathcal {W}}}t_\sigma \) is the Wigner–Ville transform of the 1D window \(w^{\mathbf {x}}_{\sigma _x}\). Equation (52) follows.

Concerning the imaginary part of the noise:

$$\begin{aligned}&\text {Cov}(\text {Im}(\widehat{n}(\xi ,\eta )),\text {Im}(\widehat{n}(\xi ',\eta ')) \simeq v \varDelta _x \varDelta _y \nonumber \\&\quad \cdot \iint w_{\varvec{\sigma }}(x{-}\xi ,y{-}\eta ) w_{\varvec{\sigma }}(x-\xi ',y{-}\eta ') \sin ^2(2\pi f x) \;\text {d}x\;\text {d}y\nonumber \\ \end{aligned}$$
(102)

Thus, the same route as the preceding one gives (53).

Moreover,

$$\begin{aligned}&\text {Cov}(\text {Re}(\widehat{n}(\xi ,\eta )),\text {Im}(\widehat{n}(\xi ',\eta ')) \simeq v \varDelta _x \varDelta _y \nonumber \\&\quad \cdot \iint w_{\varvec{\sigma }}(x-\xi ,y-\eta ) w_{\varvec{\sigma }}(x-\xi ',y-\eta ')\nonumber \\&\quad \cdot \sin (2\pi f x) \cos (2\pi f x) \;\text {d}x\;\text {d}y \nonumber \\&\quad \simeq \frac{1}{2} v \varDelta _x \varDelta _y \cdot \iint w_{\varvec{\sigma }}(x-\xi ,y-\eta ) w_{\varvec{\sigma }}(x-\xi ',y-\eta ') \nonumber \\&\quad \cdot \sin (4\pi f x) \;\text {d}x\;\text {d}y \end{aligned}$$
(103)

which gives, in a similar fashion, (54). \(\square \)

Wigner–Ville Transform of Some Windows

The Wigner–Ville transform of the rectangular and Gaussian windows can be found in the literature [7, 22]. However, they sometimes contain typos. For the sake of completeness, we give here the calculation of these transforms. We also give the calculation of the Wigner–Ville transform of the triangular windows, which we have not been able to find in the available literature.

A numerical assessment is provided at the following URL: http://www.loria.fr/~sur/software/VerifWV/

By definition, \({{\mathcal {W}}}f(x,\lambda )=\int f(x+\tau /2)f(x-\tau /2)e^{-i\tau \lambda } \;\text {d}\tau \). Since f is symmetric,

$$\begin{aligned} {{\mathcal {W}}}f(x,\lambda )=2\int f(\tau +x)f(\tau -x)e^{-2i\tau \lambda }\;\text {d}\tau \end{aligned}$$
(104)

Since \({{\mathcal {W}}}f(-x,\lambda )={{\mathcal {W}}}f(x,\lambda )\), we assume, without loss of generality, that \(x\ge 0\).

1.1 Rectangular Window

Here, \(f=r_a\) in Table 1. For any \(u\in [-a,a]\),

$$\begin{aligned} {{\mathcal {W}}}f(x,\lambda )= & {} \frac{1}{2a^2}\int _{x-a}^{a-x} e^{-2i\tau \lambda } \;\text {d}\tau \end{aligned}$$
(105)
$$\begin{aligned}= & {} \frac{1}{2a^2\lambda }\sin (2\xi (a-x)) \end{aligned}$$
(106)

Thus, for any \(x\in {\mathbb {R}}\),

$$\begin{aligned} {{\mathcal {W}}}f(x,\lambda ) = \frac{1}{2a^2\lambda }\sin (2\xi (a-|x|)) {\mathbbm {1}}_{[-a,a]}(x) \end{aligned}$$
(107)

The value for \(\lambda =0\) is given by a Taylor expansion, that is,

$$\begin{aligned} {{\mathcal {W}}}f(x,0) = \frac{a-|x|}{a^2} {\mathbbm {1}}_{[-a,a]}(x) \end{aligned}$$
(108)

1.2 Triangular Window

Here, \(f=t_b\) in Table 1:

$$\begin{aligned} t_b(x) = \frac{b-|x|}{b^2} {\mathbbm {1}}_{[-b,b]}(x) \end{aligned}$$
(109)

Moreover, if \(x\ge b\), \({{\mathcal {W}}}f(x,\lambda )=0\).

First case. \(b/2\le x\le b\). We calculate successively

$$\begin{aligned} {{\mathcal {W}}}f(x,\lambda )= & {} 2\int _{x-b}^{b-x} \frac{b-x-\tau }{b^2}\frac{b-x+\tau }{b^2} e^{-2i\tau \lambda } \;\text {d}\tau \end{aligned}$$
(110)
$$\begin{aligned}= & {} \frac{2}{b^4}\int _{x-b}^{b-x} \left( (b-x)^2-\tau ^2\right) e^{-2i\tau \lambda }\;\text {d}\tau \end{aligned}$$
(111)
$$\begin{aligned}= & {} \frac{2(b-x)^2}{b^4} \int ^{b-x}_{x-b}e^{-2i\tau \lambda }\;\text {d}\tau \nonumber \\&-\frac{2}{b^4} \int _{x-b}^{b-x} \tau ^2e^{-2i\tau \lambda }\;\text {d}\tau \end{aligned}$$
(112)

On the one hand,

$$\begin{aligned} \int _{x-b}^{b-x} e^{-2i\tau \lambda }\;\text {d}\tau = \sin (2\xi (b-x))/\lambda \end{aligned}$$
(113)

On the other hand,

$$\begin{aligned}&\int ^{b-x}_{x-b} \tau ^2e^{-2i\tau \lambda }\;\text {d}\tau = \frac{(b-x)^2}{\lambda }\sin (2\lambda (b-x)) \nonumber \\&\qquad + \frac{1}{i\xi }\int ^{b-x}_{x-b} \tau e^{-2i\tau \lambda }\;\text {d}\tau \end{aligned}$$
(114)
$$\begin{aligned}&\quad =\frac{(b-x)^2}{\lambda }\sin (2\lambda (b-x)) \nonumber \\&\qquad + \frac{1}{i\lambda } \left( \frac{x-b}{i\lambda } \cos (2\lambda (b-x)) + \frac{1}{2i\lambda ^2}\sin (2\lambda (b-x)) \right) \nonumber \\ \end{aligned}$$
(115)
$$\begin{aligned}&\quad =\frac{(b-x)^2}{\lambda }\sin (2\xi (b-x)) \nonumber \\&\qquad + \frac{b-x}{\lambda ^2} \cos (2\lambda (b-x)) - \frac{1}{2\lambda ^3}\sin (2\lambda (b-x)) \end{aligned}$$
(116)

Thus,

$$\begin{aligned} {{\mathcal {W}}}f(x,\lambda )= & {} \frac{2}{b^4\lambda ^2}\Biggl ( -(b-x)\cos (2\lambda (b-x)) \Biggr .\nonumber \\&\Biggl . +\frac{1}{2\lambda }\sin (2\lambda (b-x)) \Biggr ) \end{aligned}$$
(117)

Second case. \(0\le x \le b/2\). We calculate successively

$$\begin{aligned} {{\mathcal {W}}}f(x,\lambda )= & {} 2\int _{x-b}^{-x} \frac{b+x+\tau }{b^2}\frac{b-x+\tau }{b^2} e^{-2i\tau \lambda } \;\text {d}\tau \nonumber \\&+2\int _{-x}^{x} \frac{b-x-\tau }{b^2}\frac{b-x+\tau }{b^2} e^{-2i\tau \lambda } \;\text {d}\tau \nonumber \\&+2\int _{x}^{b-x} \frac{b-x-\tau }{b^2}\frac{b+x-\tau }{b^2} e^{-2i\tau \lambda } \;\text {d}\tau \nonumber \\= & {} \frac{2}{b^4}\int _{-x}^{x} \left( (b-x)^2-\tau ^2\right) e^{-2i\tau \lambda } \;\text {d}\tau \nonumber \\&+\frac{4}{b^4}\int _{x}^{b-x}\left( (b-\tau )^2-x^2\right) \cos (2\tau \lambda )\;\text {d}\tau \nonumber \\ \end{aligned}$$
(118)
$$\begin{aligned}= & {} \frac{2(b-x)^2}{b^4}\int _{-x}^{x}e^{-2i\tau \lambda } \;\text {d}\tau \nonumber \\&- \frac{2}{b^4}\int _{-x}^x \tau ^2e^{-2i\tau \lambda } \;\text {d}\tau \nonumber \\&+ \frac{4}{b^4}\int _{x}^{b-x}(b-\tau )^2\cos (2\tau \lambda )\;\text {d}\tau \nonumber \\&-\frac{4x^2}{b^4}\int _{x}^{b-x}\cos (2\tau \lambda )\;\text {d}\tau \end{aligned}$$
(119)

Now,

$$\begin{aligned}&\int _{-x}^{x}e^{-2i\tau \lambda } \;\text {d}\tau = \sin (2\lambda x)/\lambda \end{aligned}$$
(120)
$$\begin{aligned}&\int _{-x}^{x}\tau ^2 e^{-2i\tau \lambda } \;\text {d}\tau = \frac{x^2}{\lambda }\sin (2\lambda x) + \frac{x}{\lambda ^2} \cos (2\lambda x)\nonumber \\&\qquad - \frac{1}{2\lambda ^3}\sin (2\lambda x) \end{aligned}$$
(121)
$$\begin{aligned}&\int _{x}^{b{-}x}\cos (2\tau \lambda )\;\text {d}\tau = \frac{1}{2\lambda }\left( \sin (2\lambda (b{-}x)){-}\sin (2\lambda x)\right) \end{aligned}$$
(122)
$$\begin{aligned}&\int _{x}^{b-x}(b-\tau )^2\cos (2\tau \lambda )\;\text {d}\tau = \frac{x^2}{2\lambda } \sin (2(b{-}x)\lambda ) \nonumber \\&\qquad - \frac{(b{-}x)^2}{2\lambda }\sin (2\lambda x) +\frac{1}{\lambda }\int _x^{b{-}x} (b{-}\tau ) \sin (2\tau \lambda )\;\text {d}\tau \nonumber \\&\quad =\frac{x^2}{2\lambda } \sin (2(b-x)\lambda ) - \frac{(b-x)^2}{2\lambda }\sin (2\lambda x) \nonumber \\&\qquad -\frac{x}{2\lambda ^2}\cos (2\lambda (b-x)) + \frac{(b-x)}{2\lambda ^2}\cos (2\lambda x)\nonumber \\&\qquad - \frac{1}{2\lambda ^2}\int _x^{b-x} \cos (2\tau \lambda )\;\text {d}\tau \nonumber \\&\quad = \frac{x^2}{2\lambda } \sin (2(b-x)\lambda ) \nonumber \\&\quad - \frac{(b-x)^2}{2\lambda }\sin (2\lambda x) -\frac{x}{2\lambda ^2}\cos (2\lambda (b-x)) \nonumber \\&\qquad + \frac{(b-x)}{2\lambda ^2}\cos (2\lambda x) - \frac{1}{4\lambda ^3}\left( \sin (2\lambda (b{-}x)){-}\sin (2\lambda x)\right) \nonumber \\ \end{aligned}$$
(123)

Consequently,

$$\begin{aligned} {{\mathcal {W}}}f(x,\lambda )= & {} \frac{2}{b^4\lambda ^2}\Bigl ( (b-2x)\cos (2\lambda x) - x \cos (2\lambda (b-x)) \Bigr .\nonumber \\&\Bigl . - \frac{1}{2\lambda }\sin (2\lambda (b-x)) + \frac{1}{\lambda }\sin (2\lambda x)\Bigr ) \end{aligned}$$
(124)

Conclusion. For any \(x\in {\mathbb {R}}\), the Wigner–Ville transform of the triangle function writes

$$\begin{aligned}&{{\mathcal {W}}}f(x,\lambda ) = \frac{2}{b^4\lambda ^2} \Biggl [ \Bigr ( -(b-|x|)\cos (2\lambda (b-|x|)) \Bigr . \Bigr . \nonumber \\&\qquad \Bigl . \Bigl . +\frac{1}{2\lambda }\sin (2\lambda (b-|x|)) \Bigr ) {\mathbbm {1}}_{[-b,b]}(x) \Bigr .\nonumber \\&\qquad + \Bigl . 2\cos (\lambda b) \left( (b-2|x|)\cos (\lambda (b-2|x|)) - \frac{1}{\lambda }\sin (\lambda (b-2|x|)) \right) \nonumber \\&\qquad \cdot {\mathbbm {1}}_{[-b/2,b/2]}(x) \Biggr ] \end{aligned}$$
(125)

The value for \(\lambda =0\) is given by a Taylor expansion:

$$\begin{aligned} {{\mathcal {W}}}f(x,0)= & {} \frac{8(b-|x|)^3}{3b^4}{\mathbbm {1}}_{[-b,b]}(x) \nonumber \\&\quad - \frac{4(b-2|x|)^3}{3b^4} {\mathbbm {1}}_{[-b/2,b/2]}(x) \end{aligned}$$
(126)

1.3 Gaussian Window

Note that generalized Gaussian functions give positive Wigner–Ville transform, and only them [10]. The Wigner–Ville transform of a Gaussian function writes as follows:

$$\begin{aligned} {{\mathcal {W}}}f(x,\lambda )= & {} \frac{1}{\pi \sigma ^2}\int e^{{-}((\tau {+}x)^2{-}(\tau -x)^2)/(2\sigma ^2)} e^{-2i\tau \lambda } \;\text {d}\tau \end{aligned}$$
(127)
$$\begin{aligned}= & {} \frac{e^{-x^2/\sigma ^2}}{\pi \sigma ^2}\int e^{-\tau ^2/\sigma ^2} e^{-2i\tau \lambda } \;\text {d}\tau \end{aligned}$$
(128)
$$\begin{aligned}= & {} \frac{1}{\sqrt{\pi }\sigma }e^{-x^2/\sigma ^2-\lambda ^2\sigma ^2} \end{aligned}$$
(129)

since the Fourier transform of \(e^{-x^2/\sigma ^2}\) is \(\sqrt{\pi }\sigma e^{-f^2\sigma ^2/4}\).

Noise Derivative with a Birectangular or Triangular–Rectangular Window

Let X(t) be a stationary random process of covariance function C(u). For any \(\varepsilon >0\), the covariance of \(\frac{X(t+\varepsilon )-X(t)}{\varepsilon }\) writes as follows.

$$\begin{aligned}&\text {Cov}\left( \frac{X(t+\varepsilon ) - X(t)}{\varepsilon },\frac{X(t'+\varepsilon ) - X(t')}{\varepsilon } \right) \nonumber \\&\quad = \frac{1}{\varepsilon ^2} \Bigl ( \text {Cov}(X(t+\varepsilon ),X(t'+\varepsilon )) \Bigr . \nonumber \\&\qquad \bigl . + \text {Cov}(X(t),X(t')) - \text {Cov}(X(t+\varepsilon ),X(t')) \nonumber \\&\qquad \Bigl .- \text {Cov}(X(t),X(t'-\varepsilon )) \Bigr ) \nonumber \\&\quad = \frac{1}{\varepsilon ^2} \left( C(u)-C(u+\varepsilon )-C(u-\varepsilon )) \right) \end{aligned}$$
(130)

with \(u=t-t'\).

When the second derivative of the covariance function C exists, this latest term converges to \(-C''(u)\) as \(\varepsilon \) tends to 0. This makes it possible to define the mean-square derivative \(X'(t)\) of the random process X at t as soon as the second derivative exists; the covariance function of X(t) being \(-C''(t)\).

This obviously generalizes to stationary random fields (see, e.g., [1]). In the case of rectangular windows, the second derivatives do not exist. However, actual computations do not depend on the mean-square derivatives, but instead on a finite difference scheme.

If a central difference scheme of step \(\varDelta _x=1\) pixel is used to estimate the derivatives,

$$\begin{aligned}&\text {Cov}\left( \frac{X(t+\varDelta _x) - X(t-\varDelta _x)}{2\varDelta _x},\frac{X(t'+\varDelta _x) - X(t'-\varDelta _x)}{2\varDelta _x} \right) \nonumber \\&\quad = \frac{1}{4\varDelta _x^2} \left( C(u+2\varDelta _x) - 2C(u) + C(u+2\varDelta _x) \right) \end{aligned}$$
(131)

which is the opposite of the second derivative of C (in the sense of the central difference scheme), denoted here by \(-\varDelta ^2C\). The problem is to compute the noise covariance in the case of birectangular and triangular–rectangular windows, thus to compute the \(-\varDelta ^2 r_a*r_a(u) = -\frac{1}{2} \varDelta ^2 {{\mathcal {W}}}r_a(u/2,0)\).

A straightforward calculation gives

$$\begin{aligned}&-\varDelta ^2 r_a*r_a(u) \nonumber \\&\quad = \frac{-1}{8a^2\varDelta _x^2} \Bigl ( (\varDelta _x-|2a+t|/2){\mathbbm {1}}_{[-2a-2\varDelta _x,-2a+2\varDelta _x]}(t) \Bigr .\nonumber \\&\qquad \Bigl .- 2(\varDelta _x-|t|/2){\mathbbm {1}}_{[-2\varDelta _x,2\varDelta _x]}(t) + \Bigr . \nonumber \\&\quad \Bigl . (\varDelta _x-|2a-t|/2){\mathbbm {1}}_{[2a-2\varDelta _x,2a+2\varDelta _x]}(t)\Bigr ) \end{aligned}$$
(132)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sur, F., Grédiac, M. Influence of the Analysis Window on the Metrological Performance of the Grid Method. J Math Imaging Vis 56, 472–498 (2016). https://doi.org/10.1007/s10851-016-0650-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-016-0650-z

Keywords

Navigation