Skip to main content

Advertisement

Log in

Effect of inclusion size on mechanical properties of alumina toughened cubic zirconia

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The relationship between alumina inclusion size and mechanical properties of particulate cubic zirconia-alumina composites was studied. The composites of the diverse size and content of alumina inclusions and of the nearly constant size of zirconia grains were used. Physical mixtures of the 8 mol% Y2O3-ZrO2 nano-powder and the γ-Al2O3 or α -Al2O3 micro-powder were cold isostatically pressed and then pressurelessly sintered for 2 h at 1300C in air. The γ -Al2O3 and α -Al2O3 powder was composed of the particles of 0.17 and 0.36 μ m in size, respectively. Crystallites of the zirconia powder had the size of 6 nm. Microstructural features of the composites have been characterised quantitatively. Hardness, critical stress intensity factor and bending strength of the composites was measured and correlated with the microstructural features. Depending on the size and content, the alumina inclusions influenced strength of the composites by influencing their fracture toughness and the presence of flaws of critical size. An increase in size of the alumina inclusions was accompanied by the increase of fracture toughness due to the additional contribution of large alumina inclusions to the crack deflection mechanism. It was found that decreasing the alumina inclusion size significantly below the cubic zirconia matrix grain size (more than 3 times) did not lead to the increased values of fracture toughness of the composites. The highest increase in fracture toughness (up to 3.9 MPa⋅ m0.5) has been found when the inclusion size was comparable to the matrix grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Q. MINH, J. Amer. Ceram. Soc. 76 (1993) 563.

    Google Scholar 

  2. E. P. BUTLER and J. DRENNAN, ibid. 65 (1982) 474.

    Google Scholar 

  3. F. J. ESPER, K. H. FRIESE and H. GEIER, in “Science and Technology of Zirconia,” edited by N. Claussen, M. Rühle and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984) p. 528.

    Google Scholar 

  4. S. RAJENDRAN, J. DRENNAN and S. P. S. BADWAL, J. Mat. Sci. Lett. 6 (1987) 1431.

    Article  Google Scholar 

  5. X. GUO, C.-Q. TANG and R.-Z. YUAN, J. Europ. Ceram. Soc. 15 (1995) 25.

    Article  Google Scholar 

  6. M. MIYAYAMA, H. YANAGIDA and A. ASADA, Am. Ceram. Soc. Bull. 64 (1986) 660.

    Google Scholar 

  7. M. MORI, T. ABE, H. ITOH, O. YAMMAMOTO, Y. TAKEDA and T. KAWAHARA, Solid State Ion. 74 (1994) 157.

    Article  Google Scholar 

  8. P. DURAN, L. M. NAVARRO, P. RECIO and J. R. JURADO, Eur. J. Solid State Inorg. Chem. 32 (1995) 963.

    Google Scholar 

  9. K. OE, K. KIKKAWA, A. KISHIMOTO, Y. NAKAMURA and H. YANAGIDA, Solid State Ion. 91 (1996) 131.

    Article  Google Scholar 

  10. P. BHARGAVA and B. R. PATTERSON, J. Amer. Ceram. Soc. 80 (1997) 1863.

    Google Scholar 

  11. S. R. CHOI and N. P. BANSAL, Ceram. Eng. Sci. Proc. 23 (2002) 741.

    Google Scholar 

  12. W. PYDA, K. HABERKO and M. M. BUĆKO, J. Amer. Ceram. Soc. 74 (1991) 2622.

    Article  Google Scholar 

  13. K. NIIHARA, J. Mat. Sci. Lett. 2 (1983) 221.

    Article  Google Scholar 

  14. A. G. EVANS, J. Amer. Ceram. Soc. 65 (1982) 497.

    Google Scholar 

  15. G. W. SCHERER, ibid. 67 (1984) 709.

    Google Scholar 

  16. R. RAJ and R. BORDIA, Acta Metall. 32 (1984) 1003.

    Article  Google Scholar 

  17. C. H. HSUEH, J. Mater. Sci. 21 (1986) 2067.

    Article  Google Scholar 

  18. C. H. HSUEH, A. G. EVANS, R. M. CANNON and R. J. BROOK, Acta Metall. 34 (1986) 927.

    Article  Google Scholar 

  19. R. K. BORDIA and G. W. SCHERER, ibid. 36 (1988) 2392.

    Google Scholar 

  20. F. F. LANGE, J. Mater. Res. 2 (1987) 59.

    Google Scholar 

  21. S. SUNDARESAN and I. A. AKSAY, J. Amer. Ceram. Soc. 73 (1990) 54.

    Article  Google Scholar 

  22. O. SUDRE, G. BAO, B. FAN, F. F. LANGE and A. G. EVANS, ibid. 75 (1992) 525.

    Article  Google Scholar 

  23. F. F. LANGE and M. M. HIRLINGER, ibid. 70 (1987) 827.

    Article  Google Scholar 

  24. F. F. LANGE, T. YAMAGUSHI, B. I. DAVIS and P. E. D. MORGAN, ibid. 71 (1988) 446.

    Article  Google Scholar 

  25. B. J. KELLETT and F. F. LANGE, ibid. 72 (1989) 725.

    Article  Google Scholar 

  26. F. F. LANGE and B. J. KELLETT, ibid. 72 (1989) 735.

    Article  Google Scholar 

  27. M. W. WEISER and L. C. DE JONGHE, ibid. 71 (1988) C-125.

    Article  Google Scholar 

  28. A. NAKAHIRA and K. NIIHARA, J. Ceram. Soc. Jpn. 100 (1992) 448.

    Google Scholar 

  29. D. A. PORTER and K. E. ESTERLING, in “Phase Transformations in Metals and Alloys,” 2nd edn. (Chapman & Hall, London, 1992) p. 139.

    Google Scholar 

  30. M. KLEITZ, L. DESSEMOND and M. C. STEIL, in Proceedings of SOFC; Materials, Process Engineering and Electrochemistry, Fifth IEA Workshop, edited by P. Biedermann and B. Krahl-Urban, (Julich, 1993) p. 147.

  31. W.E. LEE and W. M. RAINFORTH, in “Ceramic Microstructures, Property Control by Processing” (Chapman & Hall, London, 1994) p. 278.

    Google Scholar 

  32. B. LAWN, in “Fracture of Brittle Solids,” 2nd edn. (Cambridge, UK, 1993).

    Google Scholar 

  33. I. E. REIMANIS, Mater. Sci. Engng. A237 (1997) 159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław M. Bućko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bućko, M.M., Pyda, W. Effect of inclusion size on mechanical properties of alumina toughened cubic zirconia. J Mater Sci 40, 5191–5198 (2005). https://doi.org/10.1007/s10853-005-4412-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-4412-3

Keywords

Navigation